可以知道,KNN算法是一种非参数学习的算法,而多元线性回归算法是一种参数学习的算法,另外KNN算法没有 ...
最优化 随着大数据的到来,并行计算的流行,实际上机器学习领域的很多研究者会把重点放在最优化方法的研究上,如large scale computation。那么为什么要研究最优化呢 我们先从机器学习研究的目的说起。机器学习理论主要是设计和分析一些让计算机可以自动 学习 的算法,这些算法可以从数据中自动分析获得规律,并利用规律对未知数据进行预测,并可用于发现数据之间隐藏的关系,解释某些现象的发生。至于 ...
2016-11-05 19:53 0 4269 推荐指数:
可以知道,KNN算法是一种非参数学习的算法,而多元线性回归算法是一种参数学习的算法,另外KNN算法没有 ...
//2019.08.06 机器学习算法中的梯度下降法(gradient descent)1、对于梯度下降法,具有以下几点特别说明:(1)不是一种机器学习算法,不可以解决分类 ...
1、准备: (1)先验概率:根据以往经验和分析得到的概率,也就是通常的概率,在全概率公式中表现是“由因求果”的果 (2)后验概率:指在得到“结果”的信息后重新修正的概率,通常为条件概率(但条件概率 ...
注:以下的默认为2分类 1、SVM原理: (1)输入空间到特征空间得映射 所谓输入空间即是输入样本集合,有部分情况输入空间与特征空间是相同得,有一部分情况二者是不同的,而模型定义都是定义到特征空间的,特征空间是指所有的输入特征向量,特征向量是利用数值来表示的n维向量,输入空间到特征空间的映射 ...
1. 线性模型简介 0x1:线性模型的现实意义 在一个理想的连续世界中,任何非线性的东西都可以被线性的东西来拟合(参考Taylor Expansion公式),所以理论上线性模型可以模拟物理世界中的 ...
1. 线性方程组 0x1:无处不在的线性方程组 日常生活或生产实际中经常需要求一些量,用未知数 x1,x2,....,xn表示这些量,根据问题的实际情况列出方程组,而最常见的就是线性方程组(当然并不是说只能用线性方程组,深度神经网路里就是非线性方程组)。 需要特别理解和思考的是,数学 ...
一、GBDT的原理 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起 ...
原帖地址:http://blog.codinglabs.org/articles/pca-tutorial.html PCA(Principal Component Analysis)是 ...