目录 梯度下降法 机器学习中的梯度下降法 最速下降法 二次型目标函数 牛顿法 Levenberg-Marquardt 修正 梯度下降法和牛顿法谁快? 共轭方向法 ...
提要:今天讲的牛顿法与拟牛顿法是求解无约束问题最优化方法的常用方法。 一 牛顿法 假设我们求下面函数的最小值: 假设f x 具有连续的二阶的连续偏导数,假设第K次迭代值为xk的值,那么可将f X 在xk附近进行二阶泰勒展开得到: 我们对上述公式求导可得: 假设其中可逆,我们就可以得到牛顿法的迭代公式为: 这样就可以得到牛顿法的迭代公式了。 牛顿法算法如下: 输入:目标函数f X ,梯度 f x , ...
2016-10-29 16:09 1 9502 推荐指数:
目录 梯度下降法 机器学习中的梯度下降法 最速下降法 二次型目标函数 牛顿法 Levenberg-Marquardt 修正 梯度下降法和牛顿法谁快? 共轭方向法 ...
牛顿法和拟牛顿法 牛顿法(Newton method)和拟牛顿法(quasi Newton method)是求解无约束最优化问题的常用方法,收敛速度快。牛顿法是迭代算法,每一步需要求解海赛矩阵的逆矩阵,计算比较复杂。拟牛顿法通过正定矩阵近似海赛矩阵的逆矩阵或海赛矩阵,简化了这一 ...
------------恢复内容开始------------ 我们现在学习的机器学习算法,大部分算法的本质都是建立优化模型,通过特定的最优化算法对目标函数(或损失函数)进行优化,通过训练集和测试集选择出最好的模型,所以,选择合适的最优化算法是非常重要的。常见的最优化方法有梯度下降法、牛顿法和拟 ...
一.简介 通过前面几节的介绍,大家可以直观的感受到:对于大部分机器学习模型,我们通常会将其转化为一个优化问题,由于模型通常较为复杂,难以直接计算其解析解,我们会采用迭代式的优化手段,用数学语言描述如下: \[\min_{v^k} f(x^k+v^k) \] 这里目标函数为\(f(x ...
多绚烂的花,多美妙的季节; 没有一朵花,能留住它的季节。 我也是一样,不停地追寻, 我终究要失去的 回到logistic回归最大似然函数这里,现在我们用牛顿法来最大化这个对数似然函数。 牛顿法求零点 牛顿法本是用来求函数零点的一个方法,一个函数的零点就是指使这个函数 ...
针对牛顿法中海塞矩阵的计算问题,拟牛顿法主要是使用一个海塞矩阵的近似矩阵来代替原来的还塞矩阵,通过这种方式来减少运算的复杂度。其主要过程是先推导出海塞矩阵需要满足的条件,即拟牛顿条件(也可以称为拟牛顿方程)。然后我们构造一个满足拟牛顿条件的近似矩阵来代替原来的海塞矩阵。 另外,在满足拟 ...
拟牛顿法(Python实现) 使用拟牛顿法(BFGS和DFP),分别使用Armijo准则和Wolfe准则来求步长 求解方程 \(f(x_1,x_2)=(x_1^2-2)^4+(x_1-2x_2)^2\)的极小值 运行结果 ...
在机器学习的优化问题中,梯度下降法和牛顿法是常用的两种凸函数求极值的方法,他们都是为了求得目标函数的近似解。在逻辑斯蒂回归模型的参数求解中,一般用改良的梯度下降法,也可以用牛顿法。由于两种方法有些相似,我特地拿来简单地对比一下。下面的内容需要读者之前熟悉两种算法。 梯度下降法 梯度下降法用来 ...