原文:Dictionary Learning(字典学习、稀疏表示以及其他)

第一部分 字典学习以及稀疏表示的概要 字典学习 Dictionary Learning 和稀疏表示 Sparse Representation 在学术界的正式称谓应该是 稀疏字典学习 Sparse Dictionary Learning 。该算法理论包含两个阶段:字典构建阶段 Dictionary Generate 和利用字典 稀疏的 表示样本阶段 Sparse coding with a pr ...

2016-10-12 22:27 0 24138 推荐指数:

查看详情

字典学习Dictionary Learning

0 - 背景 0.0 - 为什么需要字典学习?   这里引用这个博客的一段话,我觉得可以很好的解释这个问题。 0.1 - 为什么需要稀疏表示?   同样引用这个博客的一段话,我觉得可以很好的解释这个问题。 左图是新飞行员(不熟练的飞行员)的大脑。图中 ...

Mon Oct 21 02:22:00 CST 2019 0 1287
稀疏表示(sparse representation)和字典学习

近十几年来,稀疏(sparsity)已经成为信号处理及其应用领域中处于第一位的概念之一。近来,研究人员又致力于过完备(overcomplete)信号表示的研究。这种表示不同于许多传统的表示。因为它能提供一个广阔范围的生成元素(atoms)。而冗余(redundant)信号表示的魅力正在 ...

Tue Aug 16 00:00:00 CST 2016 0 2735
字典学习Dictionary Learning, KSVD)详解

注:字典学习也是一种数据降维的方法,这里我用到SVD的知识,对SVD不太理解的地方,可以看看这篇博客:《SVD(奇异值分解)小结 》;数据集:https://pan.baidu.com/s/1ZmpUSIscy4VltcimwwIWew 1、字典学习思想 字典学习的思想应该源 ...

Sun Dec 09 21:57:00 CST 2018 40 26341
稀疏表示字典学习和压缩感知(基本概念)

稀疏表示字典学习 当样本数据是一个稀疏矩阵时,对学习任务来说会有不少的好处,例如很多问题变得线性可分,储存更为高效等。这便是稀疏表示字典学习的基本出发点。 稀疏矩阵即矩阵的每一行/列中都包含了大量的零元素,且这些零元素没有出现在同一行/列,对于一个给定的稠密矩阵,若我们能通过某种方法找到 ...

Thu Jan 17 19:47:00 CST 2019 0 2099
稀疏表示 过完备 字典

2基于局部时窄特征的动作识别模哩2.1 动作识别的基本思想实现了基于时空兴趣点和时空单词的动作表示和识别方法,该方法首先通过训练从样本中提取出准确的时空兴趣点,建立基于兴趣点特征的时空码本,并构造出动作分类器。在动作识别过程中,计算待分类视频中的兴趣点特征和时空码本的距离对兴趣点进行分类,生成 ...

Sun Jun 08 18:05:00 CST 2014 0 4460
稀疏编码之字典学习

稀疏信号的一个最重要的部分就是字典A。那么选择A?怎么样选择才是合理? 一、字典的选择和学习 如何选择合适的字典,一种基本的方法是选择预定义的字典,如无抽样小波、可操纵小波、轮廓博、曲波,等等。近期很多学者提出来主要针对图像的字典,特别是类似于“卡通”的图像内容,假设分段平滑并具有平滑边界 ...

Fri Aug 29 20:44:00 CST 2014 0 10521
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM