损失函数(Loss/Error Function): 计算单个训练集的误差,例如:欧氏距离,交叉熵,对比损失,合页损失 代价函数(Cost Function): 计算整个训练集所有损失之和的平均值 至于目标函数(Objective function),字面一些,就是有某个(最优 ...
tags: caffe 机器学习 在机器学习 暂时限定有监督学习 中,常见的算法大都可以划分为两个部分来理解它 一个是它的Hypothesis function,也就是你用一个函数f,来拟合任意一个输入x,让预测值t t f x 来拟合真实值y 另一个是它的cost function,也就是你用一个函数E,来表示样本总体的误差。 而有时候还会出现loss function,感觉会和cost fu ...
2016-10-12 20:21 0 3372 推荐指数:
损失函数(Loss/Error Function): 计算单个训练集的误差,例如:欧氏距离,交叉熵,对比损失,合页损失 代价函数(Cost Function): 计算整个训练集所有损失之和的平均值 至于目标函数(Objective function),字面一些,就是有某个(最优 ...
最近学习遇到了代价函数,在网上搜索整理了几个容易混淆的概念: 一、定义 损失函数定义在单个样本上,算的是一个样本的误差。 代价函数定义在整个训练集上,是所有样本误差的平均,也就是损失函数的平均。 目标函数定义为最终需要优化的函数,等于经验风险 + 结构风险(也就是Cost Function ...
Logistic Regression (逻辑回归):用于二分分类的算法。 例如: 判断一幅图片是否为猫的图片,结果有两种:1(是猫)和0(不是猫) 假设输入的图片由64*64个像素组成,每个像 ...
Mean Square Error \[cost(t,o)=\frac{1}{n}\sum\limits_{i=1}^n{(o-t)^2}\] Binary Cross-Entropy 用于计算 target 和 output 之间的binary 交叉熵。\[cost(t,o ...
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数可以看做 误差部分(loss term) + 正则化部分 ...
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数可以看做 误差 ...
线性回归中提到最小二乘损失函数及其相关知识。对于这一部分知识不清楚的同学可以参考上一篇文章《线性回归、梯度下降》。本篇文章主要讲解使用最小二乘法法构建损失函数和最小化损失函数的方法。 最小二 ...
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 线性回归中提到最小二乘损失函数及其相关知识。对于这一部分知识不清楚的同学可以参考上 ...