前言 本文试图提纲挈领的对决策树和随机森林的原理及应用做以分析 决策树 算法伪代码 def 创建决策树: if (数据集中所有样本分类一致): #或者其他终止条件 创建携带类标签的叶子节点 else: 寻找划分 ...
这节课终于不是那么迷糊了,如果 分满分的话,听懂程度有 分了,初学者就是这么容易满足。 : 老师说这是这 次课里最简单的一次。。。oh。。。no。 不废话了,接着记笔记吧。 CART:classsification and regression tree 三种决策树:ID ,C . ,CART 树是最重要的数据结构。 决策树示意图: 决策树最重要的知识点: 决策树学习采用的是自顶向下的递归方法,其 ...
2016-10-11 13:09 0 1566 推荐指数:
前言 本文试图提纲挈领的对决策树和随机森林的原理及应用做以分析 决策树 算法伪代码 def 创建决策树: if (数据集中所有样本分类一致): #或者其他终止条件 创建携带类标签的叶子节点 else: 寻找划分 ...
一、前述 决策树是一种非线性有监督分类模型,随机森林是一种非线性有监督分类模型。线性分类模型比如说逻辑回归,可能会存在不可分问题,但是非线性分类就不存在。二、具体原理 ID3算法 1、相关术语 根节点:最顶层的分类条件叶节点:代表每一个类别号中间节点:中间分类条件分枝:代表每一个条件 ...
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:汪毅雄 导语 本文用容易理解的语言和例子来解释了决策树三种常见的算法及其优劣、随机森林的含义,相信能帮助初学者真正地理解相关知识。 决策树 引言 决策树,是机器学习中一种非常常见的分类方法,也可以说是 ...
一. 决策树 1. 决策树: 决策树算法借助于树的分支结构实现分类,决策树在选择分裂点的时候,总是选择最好的属性作为分类属性,即让每个分支的记录的类别尽可能纯。 常用的属性选择方法有信息增益(Information Gain),增益比例(gain ratio),基尼指数(Gini index ...
数据来自 UCI 数据集 匹马印第安人糖尿病数据集 载入数据 建立决策树,网格搜索微调模型 评价模型 画出决策树 随机森林 ...
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第26篇文章,我们一起聊聊另外一个集成学习模型,它就是大名鼎鼎的随机森林。 随机森林在业内名气和使用范围都很广,曾经在许多算法比赛当中拔得头筹。另外,它也是一个通过组合多个弱分类器构建强分类器的经典模型 ...
本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 决策树---------------------------------------------------------------------1.描述:以树为基础的方法可以用于回归 ...
与SVM一样,决策树是通用的机器学习算法。随机森林,顾名思义,将决策树分类器集成到一起就形成了更强大的机器学习算法。它们都是很基础但很强大的机器学习工具,虽然我们现在有更先进的算法工具来训练模型,但决策树与随机森林因其简单灵活依然广受喜爱,建议大家学习。 一、决策树 1.1 什么是决策树 ...