简介 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了。scikit-learn简称sklearn,支持包括分类、回归、降维和聚类四大机器学习算法。还包含了特征提取、数据处理和模型评估三大模块。 sklearn是Scipy的扩展,建立在NumPy ...
Text classifcation with Na ve Bayes In this section we will try to classify newsgroup messages using a dataset that can be retrieved from within scikit learn. This dataset consists of around , newsgro ...
2016-09-27 17:03 0 2051 推荐指数:
简介 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了。scikit-learn简称sklearn,支持包括分类、回归、降维和聚类四大机器学习算法。还包含了特征提取、数据处理和模型评估三大模块。 sklearn是Scipy的扩展,建立在NumPy ...
...
岭回归 岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。 使用sklearn.linear_model.Ridge进行岭 ...
sklean 进行数据展示 sklearn model中的属性 数据标准化 许多学习算法中目标函数的基础都是假设所有的特征都是零均值并且具有同一阶数上的方差(比如径向基函数,支持向量机以及L1L2正则化项等)。如果某个特征 ...
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standardization) 规范化(Normalization) 二值化 分类 ...
今天介绍一个机器学习包,sklearn。其功能模块有regression\classification\clustering\Dimensionality reduction\data preprocessing\model selection 对我来说,常用的主要有regression(SVR ...
简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项。线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误差项之后,方程的解法就存在了改变,一般使用最小二乘法进行计算。 使用 ...
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,所以最好的教程其实就是官方文档。 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常详细,同时许多人对官方文档的理解和结构上都不能很好地把握,我也打算好好学习 ...