...
简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项。线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误差项之后,方程的解法就存在了改变,一般使用最小二乘法进行计算。 使用sklearn.linear model.LinearRegression进行线性回归 sklearn对Data Mining的各类 ...
2016-09-18 12:41 3 59666 推荐指数:
...
有监督学习--简单线性回归模型(调用 sklearn 库代码实现)0.引入依赖1.导入数据(data.csv)2.定义损失函数3.导入机器学习库 sklearn4.测试:运行算法,从训练好的模型中提取出系数和截距5.画出拟合曲线6.附录-测试数据 有监督学习--简单线性回归模型 ...
一、介绍 线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。 1、相关性分析 相关性分析是对两个或多个具备相关性元素进行分析,从而衡量两个变量元素之间相关密切程度。 以双变量为例,变量x 和变量y存在 ...
协方差:两个变量总体误差的期望。 简单的说就是度量Y和X之间关系的方向和强度。 X :预测变量Y :响应变量 Y和X的协方差:[来度量各个维度偏离其均值的程度] 备注:[之所以除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的协方差,即统计上所谓 ...
> 以下内容是我在学习https://blog.csdn.net/mingxiaod/article/details/85938251 教程时遇到不懂的问题自己查询并理解的笔记,由于sklearn版本更迭改动了原作者的代码,如有理解偏差欢迎指正。 1. np.linspace ...
//2019.08.04#线性回归算法基础入门(Linear Regression)1、线性回归算法是一种非常典型的解决回归问题的监督学习算法,它具有以下几个特点:(1)典型的回归算法,可以解决实际中的回归问题;(2)思想简单,容易实现;(3)是许多强大的非线性算法模型的基础;(4)结果具有很好 ...
Pytorch 实现简单线性回归 问题描述: 使用 pytorch 实现一个简单的线性回归。 受教育年薪与收入数据集 单变量线性回归 单变量线性 ...