原文:机器学习之线性模型

概念储备: The least square method 和 least square error 狭义的最小二乘方法,是线性假设下的一种有闭式解的参数 求解方法,最终结果为全局最优 梯度下降法,是假设条件更为广泛 无约束 的,一种通过迭代更新来逐步进行的参数 优化方法,最终结果为局部最优 广义的最小二乘准则,是一种对于偏差程度的评估准则,与上两者不同。 数值解 numerical soluti ...

2016-09-17 18:55 0 4657 推荐指数:

查看详情

机器学习---线性模型

基本形式:   d个属性描述的示例x=(x1;x2;...;xd),xi是x在第i个属性上的取值。线性模型试图学一个通过属性的线性组合进行预测的函数:   f(x)=w1x1+w2x2+...+wdxd+b,   向量形式为   f(x)=wTx+b   w=(w1;w2;...;wd ...

Fri Sep 15 00:56:00 CST 2017 0 1067
机器学习线性回归模型

1. 线性回归 什么是回归? 从大量的函数结果和自变量反推回函数表达式的过程就是回归。线性回归是利用数理统计中回归分析来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。 一元线性回归: 只包括一个自变量()和一个因变量(),且二者的关系可用一条直线近似表示,这种回归分析称为 ...

Wed Aug 07 05:40:00 CST 2019 0 961
机器学习中的线性模型

一、基本形式 给定由d个属性描述的示例x=(x1, x2, ..., xd),则线性模型(linear mdel)的预测函数f(x)是属性的线性组合,用向量形式表示为f(x) = wTx + b。 线性模型蕴涵了机器学习中一些重要的基本思想。通过在线性模型中引入层次结构或高维映射,就可以 ...

Thu Jan 31 01:31:00 CST 2019 0 869
机器学习--线性回归模型原理

线性回归, 是回归分析中的一种, 其表示自变量与因变量之间存在线性关系. 回归分析是从数据出发, 考察变量之间的数量关系, 并通过一定的数学关系式将这种关系描述出来, 再通过关系式来估计某个变量的取值, 同时给出该估计的可靠程度. 下面我们从一元线性回归开始说起. 1. 一元线性回归 在回归 ...

Sun Mar 17 01:56:00 CST 2019 0 553
机器学习——线性高斯模型

高斯作为机器学习中的常客也是无法避免的,而线性模型作为比较简单的模型,两者结合出的线性高斯模型,在今后的机器学习中大量涉及到这方面的知识。例如在各种滤波中,高斯滤波,卡曼滤波,粒子滤波。 一维情况 MLE: Maximum Likelihood Estimation 高斯分布在机器学习中占有 ...

Mon Jan 17 23:55:00 CST 2022 0 2232
机器学习 —— 概率图模型学习:对数线性模型

  对数线性模型是无向图中经常使用的一种模型。其利用特征函数以及参数的方式对势函数进行定义,可获得较好的效果。在之前有向图的学习中,我们发现可以利用d-seperet,充分统计,狄利克雷函数等方式来很优雅的获得参数估计的解析解。但是在无向图中,这些优越的条件都不复存在。而无向图在现实条件下的使用 ...

Wed Mar 16 05:27:00 CST 2016 0 2473
机器学习线性模型和非线性的区别

机器学习线性模型和非线性的区别 一、总结 一句话总结: 1)、线性和非线性的区别是是否可以用直线将样本划分开(这个观点是对的) 2)、线性模型可以是用曲线拟合样本,但是分类的决策边界一定是直线的,例如logistics模型 3)、区分是否为线性模型,主要是看一个乘法式子中自变量x前 ...

Wed Sep 23 06:13:00 CST 2020 0 1164
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM