1 Backpropation 反向传播算法 我们在学习和实现反向传播算法的时候,往往因为其计算的复杂性,计算内涵的抽象性,只是机械的按照公式模板去套用算法。但是这种形式的算法使用甚至不如直接调用一些已有框架的算法实现来得方便。 我们实现反向传播算法,就是要理解为什么公式这么写,为什么这么算 ...
作者:杜客 链接:https: zhuanlan.zhihu.com p 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 译者注:本文智能单元首发,译自斯坦福CS n课程笔记Backprop Note,课程教师Andrej Karpathy授权翻译。本篇教程由杜客翻译完成,堃堃和巩子嘉进行校对修改。译文含公式和代码,建议PC端阅读。 原文如下: 内容列表: 简介 ...
2016-09-12 09:40 0 2558 推荐指数:
1 Backpropation 反向传播算法 我们在学习和实现反向传播算法的时候,往往因为其计算的复杂性,计算内涵的抽象性,只是机械的按照公式模板去套用算法。但是这种形式的算法使用甚至不如直接调用一些已有框架的算法实现来得方便。 我们实现反向传播算法,就是要理解为什么公式这么写,为什么这么算 ...
1、反向传播 简单的理解,反向传播的确就是复合函数的链式法则,但其在实际运算中的意义比链式法则要大的多。 链式求导十分冗余,因为很多路径被重复访问了,对于权值动则数万的深度模型中的神经网络,这样的冗余所导致的计算量是相当大的。 同样是利用链式法则,BP算法则机智地避开了这种冗余 ...
理解反向传播 要理解反向传播,先来看看正向传播。下面是一个神经网络的一般结构图: 其中,\(x\) 表示输入样本,\(\bm{w}\) 表示未知参数(图中未标出偏置 \(b\)), \(S\) 表示激活函数,\(y\) 表示预测值,\(\hat{y}\) 表示真实值。 显然,通过从样本 \(x ...
直观理解反向传播 反向传播算法是用来求那个复杂到爆的梯度的。 上一集中提到一点,13000维的梯度向量是难以想象的。换个思路,梯度向量每一项的大小,是在说代价函数对每个参数有多敏感。 如上图,我们可以这样里理解,第一个权重对代价函数的影响是是第二个的32倍。 我们来考虑一个还没有 ...
反向传播算法是深度学习的最重要的基础,这篇博客不会详细介绍这个算法的原理和细节。,如果想学习反向传播算法的原理和细节请移步到这本不错的资料。这里主要讨论反向传播算法中的一个小细节:反向传播算法为什么要“反向”? 背景 在机器学习中,很多算法最后都会转化为求一个目标损失函数(loss ...
误差逆传播算法(error BackPropagation,BP)是神经网络中常用的传播算法。BP算法不仅可以应用于多层前馈神经网络,还可以应用于其他类型的神经网络,如训练递归神经网络。通常所说的“BP网络”一般是指用BP算法训练的多层前馈神经网络 ...
知识回顾 1:首先引入一些便于稍后讨论的新标记方法: 假设神经网络的训练样本有m个,每个包含一组输入x和一组输出信号y,L表示神经网络的层数,S表示每层输入的神经元的个数,SL代表最后一层中处理的 ...
,为什么这么说呢?这一章主要讲后向传播(Backpropagration, BP)算法,Ng花了一大半的时间 ...