深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分、级数,所以看起来觉得很复杂 ...
mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的。但是CNN层数要多一些,网络模型需要自己来构建。 程序比较复杂,我就分成几个部分来叙述。 首先,下载并加载数据: 定义四个函数,分别用于初始化权值W,初始化偏置项b, 构建卷积层和构建池化层。 接下来构建网络。整个网络由两个卷积层 包含激活层和池化层 ,一个全连接层,一个dropout层和一个softmax层组成。 网络构建好 ...
2016-09-08 16:31 11 57627 推荐指数:
深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分、级数,所以看起来觉得很复杂 ...
3:用tensorflow搭个神经网络出来 为什么用tensorflow呢,应为谷歌是亲爹啊,虽然有些人说caffe更适合图像啊mxnet效率更高等等,但爸爸就是爸爸,Android都能那么火,一个道理嘛。其实这些个框架一通百通,就是语法不一样了些。从tensorflow ...
MNIST 卷积神经网络。https://github.com/nlintz/TensorFlow-Tutorials/blob/master/05_convolutional_net.py 。TensorFlow搭建卷积神经网络(CNN)模型,训练MNIST数据集。 构建模型。 定义输入数据 ...
本文将介绍如何采用卷积神经网络(CNN)来处理Fashion-MNIST数据集。 程序流程如下: 1、准备样本数据 2、构建卷积神经网络模型 3、网络学习(训练) 4、消费、测试 除了网络模型的构建,其它步骤都和前面介绍的普通神经网络的处理完全一致,本文就不重复介绍了,重点讲一下模型 ...
前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败。如下图: 同样是在一个图片中找圆形,如果左边为训练样本,右边为测试样本,如果只训练了左边的情况,右边的一定会预测错误,然而在我们人眼看 ...
很玄学,没有修改参数,在test上的准确率从98%多变为99.1%了 参考链接:《简单粗暴Tensorflow》,狂吹 ...
一、构建模型 二、预测结果 可以看到,5个epoch后准确率已经非常高,通过非卷积网络训练模型的准确率低于卷积网络,读者可以自行试验 参考: https://tensorflow.google.cn/tutorials ...
刚开始学习tf时,我们从简单的地方开始。卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始。 神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层。 数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出。输出的时候,我们可以使 ...