原文:机器学习实战0:评论爬虫+贝叶斯模型标注恶意评论+分布式形式

一 引言 本程序是一个完整的机器学习过程,先编写基于python的爬虫脚本,爬取目标论坛网站的评论到本地存储,然后使用贝叶斯分类模型对评论进行分类,预测新 的评论是否为垃圾评论。如果遇到大数据量的问题,可以把贝叶斯算法写成mapreduce模式,map负责把数据集划分成键值对格式,类序号为key,属 性向量为value,reduce进行汇总每类的先验概率和条件概率,主server汇总所有类的统计 ...

2016-07-05 21:47 0 2008 推荐指数:

查看详情

机器学习实战1:朴素模型:文本分类+垃圾邮件分类

  学习了那么多机器学习模型,一切都是为了实践,动手自己写写这些模型的实现对自己很有帮助的,坚持,共勉。本文主要致力于总结实战中程序代码的实现(python)及朴素模型原理的总结。python的numpy包简化了很多计算,另外本人推荐使用pandas做数据统计。 一 引言 ...

Tue Jun 21 06:19:00 CST 2016 6 21442
机器学习 —— 概率图模型网络)

  概率图模型(PGM)是一种对现实情况进行描述的模型。其核心是条件概率,本质上是利用先验知识,确立一个随机变量之间的关联约束关系,最终达成方便求取条件概率的目的。 1.从现象出发---这个世界都是随机变量   这个世界都是随机变量。   第一,世界是未知的,是有多种可能性的。   第二 ...

Wed Dec 30 05:16:00 CST 2015 2 52671
机器学习实战之朴素

一,引言   前两章的KNN分类算法和决策树分类算法最终都是预测出实例的确定的分类结果,但是,有时候分类器会产生错误结果;本章要学的朴素分类算法则是给出一个最优的猜测结果,同时给出猜测的概率估计值。 1 准备知识:条件概率公式 相信学过概率论的同学对于概率论绝对不会陌生,如果一时觉得 ...

Sat May 13 05:09:00 CST 2017 2 11888
机器学习基础——带你实战朴素模型文本分类

本文始发于个人公众号:TechFlow 上一篇文章当中我们介绍了朴素模型的基本原理。 朴素的核心本质是假设样本当中的变量服从某个分布,从而利用条件概率计算出样本属于某个类别的概率。一般来说一个样本往往会含有许多特征,这些特征之间很有可能是有相关性的。为了简化模型,朴素 ...

Wed Jan 22 16:38:00 CST 2020 0 232
机器学习--朴素模型原理

朴素中的朴素是指特征条件独立假设, 是指贝叶斯定理, 我们从贝叶斯定理开始说起吧. 1. 贝叶斯定理 贝叶斯定理是用来描述两个条件概率之间的关系 1). 什么是条件概率? 如果有两个事件A和B, 条件概率就是指在事件B发生的条件下, 事件A发生的概率, 记作P(A|B ...

Sun Mar 17 00:14:00 CST 2019 0 1969
机器学习-算法

0. 前言 这是一篇关于方法的科普文,我会尽量少用公式,多用平白的语言叙述,多举实际例子。更严格的公式和计算我会在相应的地方注明参考资料。方法被证明是非常 general 且强大的推理框架,文中你会看到很多有趣的应用。 1. 历史 托马斯·(Thomas Bayes)同学 ...

Thu Jul 19 01:47:00 CST 2018 0 2386
机器学习 - 朴素

简介 朴素是一种基于概率进行分类的算法,跟之前的逻辑回归有些相似,两者都使用了概率和最大似然的思想。但与逻辑回归不同的是,朴素斯通过先验概率和似然概率计算样本在每个分类下的概率,并将其归为概率值最大的那个分类。朴素适用于文本分类、垃圾邮件处理等NLP下的多分类问题。 核心 ...

Fri Aug 06 01:51:00 CST 2021 0 199
机器学习(五)—朴素

  最近一直在看机器学习相关的算法,今天我们学习一种基于概率论的分类算法—朴素。本文在对朴素进行简单介绍之后,通过Python编程加以实现。 一 朴素概述 ...

Thu Sep 03 05:37:00 CST 2015 1 3708
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM