最近听了关于HOG与SVM的报告,比较深刻的学习了算法原理与实现方式。这里根据一些资料作下总结,方便日后拾起: A.方向梯度直方图(HOG,Histogram of Gradient) 将图像依次划分为检测窗口(window)、块(block)、胞元(cell)3个层次 大体流程 ...
opencv学习笔记 七 SVM HOG 一 简介 方向梯度直方图 Histogram of Oriented Gradient,HOG 特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度直方图来构成特征。Hog特征结合SVM分类器已经被广泛用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG SVM进行行人检测的方法是法国研究院 ...
2016-06-24 10:49 0 12112 推荐指数:
最近听了关于HOG与SVM的报告,比较深刻的学习了算法原理与实现方式。这里根据一些资料作下总结,方便日后拾起: A.方向梯度直方图(HOG,Histogram of Gradient) 将图像依次划分为检测窗口(window)、块(block)、胞元(cell)3个层次 大体流程 ...
#1,概念 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类、以及回归分析。 SVM的主要思想可以概括为两点:⑴它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入 ...
HOG+SVM流程 1.提取HOG特征 灰度化 + Gamma变换(进行根号求解) 计算梯度map(计算梯度) 图像划分成小的cell,统计每个cell梯度直方图 多个cell组成一个block, 特征归一化 多个block串接,并归一化 2.训练SVM分类器 ...
最近想用svm+hog检测行人。网上找了很多代码,都看不太懂。无奈,水平太低。好不容易找到一个博客,介绍的很详细,但是有一点不太清楚。我在这补充一下。 先贴上原文:http://blog.csdn.net/candyforever/article/details/8963999 http ...
参考了秋风细雨的文章:http://blog.csdn.net/candyforever/article/details/8564746 花了点时间编写出了程序,先看看效果吧。 识别效果大概都能正确。 好了,开始正题: 因为本程序是提取HOG特征,使用SVM进行分类的,所以大概了解 ...
一、SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类、回归分析。原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题。其学习策略是使间隔最大化,也就是常说的基于结构风险最小化寻找最优的分割超平面 ...
HOG SVM 车辆检测 近期需要对卡口车辆的车脸进行检测,首先选用一个常规的检测方法即是hog特征与SVM,Hog特征是由dalal在2005年提出的用于道路中行人检测的方法,并且取的了不错的识别效果。在人脸检测方面目前主流的方法,先不考虑复杂的深度学习,大多采用Haar和Adaboost ...
交叉验证:拟合的好,同时预测也要准确 我们以K折交叉验证(k-folded cross validation)来说明它的具体步骤。{A1,A2,A3,A4,A5,A6,A7,A8,A9}">{ ...