...
转载请注明出处: http: www.cnblogs.com darkknightzh p .html 参考文档:mkl官方文档 说明: 用于计算n n实 复非对称矩阵A的特征值和左 右特征向量。 A的右特征值v满足:A v v, 为特征值。 A的左特征值u满足: u H A lambda u H , 为特征值。 u H 为u的共轭转置。The computed eigenvectors are ...
2016-06-14 19:39 0 3463 推荐指数:
...
最近闲来无事,写点关于matlab在矩阵计算应用中的实例和大家分享分享 目的:计算正互反矩阵的特征值及特征向量 其实我们可以应用matlab自带的库函数eig很轻松的计算出某个矩阵的特征值和特征向量,具体用法如下: 例如: 则可以由[W,X]=eig(A)直接求出A的特征值 ...
矩阵的特征值和特征向量 定义 对于\(n\)阶方阵\(A\),若存在非零列向量\(x\)和数\(\lambda\)满足\(Ax=\lambda x\),则称\(\lambda\)和\(x\)为一组对应的特征值和特征向量 在确定了特征值之后,可以得到对应\(x\)的无穷多个解 求解特征值 ...
特征向量是一个向量,当在它上面应用线性变换时其方向保持不变。考虑下面的图像,其中三个向量都被展示出来。绿色正方形仅说明施加到这三个向量上的线性变换。 在这种情况下变换仅仅是水平方向乘以因子2和垂直方向乘以因子0.5,使得变换矩阵A定义 ...
特征向量与特征值 我们考虑任何一个线性变换都可以等同于乘上一个矩阵。 但是乘上一个矩阵的复杂度是 \(O(n^2)\) 的,所以我们需要考虑更优秀的做法。 考虑线性变换的矩阵 \(A\) 和一个列向量 \(\alpha\) 。 \[A\alpha=\lambda\alpha ...
一 定义 假设矩阵A为n*n方阵,x为n*1向量,则y=Ax表示矩阵A对向量x的线性变换结果,由于A为n*n方阵,则y为n*1向量。对大多数x进行线性变换,得到向量y与原向量x一般都不共线,只有少数向量x满足 ,其中 被称为矩阵A的特征值,x 被称为矩阵A的特征向量 ...
转自:https://blog.csdn.net/fuming2021118535/article/details/51339881 在刚开始学的特征值和特征向量的时候只是知道了定义和式子,并没有理解其内在的含义和应用,这段时间整理了相关的内容,跟大家分享一下; 首先我们先把特征值和特征向量 ...
转自:http://mini.eastday.com/bdmip/180328092726628.html# 定义: 对于给定矩阵A,寻找一个常数λ(可以为复数)和非零向量x,使得向量x被矩阵A作用后所得的向量Ax与原向量x平行,并且满足Ax=λx。 2 特征值和特征向量的几何 ...