机器学习问题可能包含成百上千的特征。特征数量过多,不仅使得训练很耗时,而且难以找到解决方案。这一问题被称为维数灾难(curse of dimensionality)。为简化问题,加速训练,就需要降维了。 降维会丢失一些信息(比如将图片压缩成jpeg格式会降低质量),所以尽管会提速,但可能使模型 ...
. Dimensionality Reduction Content . Dimensionality Reduction . Motivation . . Motivation one: Data Compression . . Motivation two: Visualization . Principal Component Analysis . . Problem formulatio ...
2016-05-24 00:42 0 5989 推荐指数:
机器学习问题可能包含成百上千的特征。特征数量过多,不仅使得训练很耗时,而且难以找到解决方案。这一问题被称为维数灾难(curse of dimensionality)。为简化问题,加速训练,就需要降维了。 降维会丢失一些信息(比如将图片压缩成jpeg格式会降低质量),所以尽管会提速,但可能使模型 ...
Content: 1. Linear Regression 1.1 Linear Regression with one variable 1.1.1 Gradient descen ...
6. 学习模型的评估与选择 Content 6. 学习模型的评估与选择 6.1 如何调试学习算法 6.2 评估假设函数(Evaluating a hypothesis) 6.3 模型选择与训练/验证/测试集(Model selection ...
3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. ...
Content: 2 Logistic Regression. 2.1 Classification. 2.2 Hypothesis representation. 2. ...
数据挖掘 Data mining:数据挖掘是从海量数据中发掘只是,这就比然涉及对海量数据的管理和分析。大体来说,数据库领域的研究为数据挖掘提供数据管理技术,而机器学习和统计学的研究为数据挖掘提供数据分析技术。 机器学习 Machine Learning:提供数据分析的能力,机器学习是大数据 ...
在机器学习的过程中,我们经常会遇见过拟合的问题。而输入数据或features的维度过高就是导致过拟合的问题之一。。维度越高,你的数据在每个特征维度上的分布就越稀疏,这对机器学习算法基本都是灾难性的。所有出现了很多降维的方法。今天我们要讨论的就是LDA降维。 LDA降维的思路是:如果两类数据线 ...
数据降维的目的:数据降维,直观地好处是维度降低了,便于计算和可视化,其更深层次的意义在于有效信息的提取综合及无用信息的摈弃。 数据降维的好处:降维可以方便数据可视化+数据分析+数据压缩+数据提取等。 降维方法 __ 属性选择:过滤法;包装法;嵌入法; |_ 映射方法 _线性映射 ...