作者: Alberto Quesada 译者: KK4SBB 责编:何永灿,关注人工智能,投稿请联系 heyc@csdn.net 或微信号 289416419 神经网络模型的每一类学习过程通常被归纳为一种训练算法。训练的算法有很多,它们的特点和性能各不相同 ...
我们在设计机器学习系统时,特别希望能够建立类似人脑的一种机制。神经网络就是其中一种。但是考虑到实际情况,一般的神经网络 BP网络 不需要设计的那么复杂,不需要包含反馈和递归。 人工智能的一大重要应用,是分类问题。本文通过分类的例子,来介绍神经网络。 .最简单的线性分类 一个最简单的分类,是在平面上画一条直线,左边为类 ,右边为类 ,直线表示为 z ax by c 这是一个分类器,输入 x,y ,那 ...
2016-04-27 15:28 3 80616 推荐指数:
作者: Alberto Quesada 译者: KK4SBB 责编:何永灿,关注人工智能,投稿请联系 heyc@csdn.net 或微信号 289416419 神经网络模型的每一类学习过程通常被归纳为一种训练算法。训练的算法有很多,它们的特点和性能各不相同 ...
内容概要: (1) 介绍神经网络基本原理 (2) AForge.NET实现前向神经网络的方法 (3) Matlab实现前向神经网络的方法 ---引例 文中以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http ...
我们在设计机器学习系统时,特别希望能够建立类似人脑的一种机制。神经网络就是其中一种。但是考虑到实际情况,一般的神经网络(BP网络)不需要设计的那么复杂,不需要包含反馈和递归。人工智能的一大重要应用,是分类问题。本文通过分类的例子,来介绍神经网络。 1.最简单的线性分类 一个最简单的分类 ...
机器学习算法完整版见fenghaootong-github 神经网络原理 感知机学习算法 神经网络 从感知机到神经网络 多层前馈神经网络 bp算法 感知机学习算法 感知机(perceptron)是二分类的线性分类模型 ...
1. 背景: 1.1 以人脑中的神经网络为启发,历史上出现过很多不同版本 1.2 最著名的算法是1980年的 backpropagation 2. 多层向前神经网络(Multilayer Feed-Forward Neural Network ...
一、BP算法的意义 对于初学者来说,了解了一个算法的重要意义,往往会引起他对算法本身的重视。BP(Back Propagation,后向传播)算法,具有非凡的历史意义和重大的现实意义。 1.1、历史意义 1969年,作为人工神经网络创始人的明斯基(Marrin M ...
前言,好久不见,大家有没有想我啊。哈哈。今天我们来随便说说卷积神经网络。 1卷积神经网络的优点 卷积神经网络进行图像分类是深度学习关于图像处理的一个应用,卷积神经网络的优点是能够直接与图像像素进行卷积,从图像像素中提取图像特征,这种处理方式更加接近人类大脑视觉系统的处理方式。另外,卷积 ...
神经网络中的偏置单元也是类似的作用。 因此,神经网络的参数也可以表示为:(W, b),其中W表示参数矩 ...