在机器学习分类结果的评估中,ROC曲线下的面积AOC是一个非常重要的指标。下面是调用weka类,输出AOC的源码: 接着说一下交叉验证; 如果没有分开训练集和测试集,可以使用Cross Validation方法,Evaluation中 ...
机器学习的 NN最近邻算法,在weka里叫IB ,是因为Instance Base ,也就是只基于一个最近邻的实例的惰性学习算法。 下面总结一下,weka中对IB 源码的学习总结。 首先需要把 weka src.jar 引入编译路径,否则无法跟踪源码。 读取data数据,完成 IB 分类器的调用,结果预测评估。为了后面的跟踪。 ctrl 点击buildClassifier,进一步跟踪buildC ...
2016-04-09 11:13 0 3030 推荐指数:
在机器学习分类结果的评估中,ROC曲线下的面积AOC是一个非常重要的指标。下面是调用weka类,输出AOC的源码: 接着说一下交叉验证; 如果没有分开训练集和测试集,可以使用Cross Validation方法,Evaluation中 ...
不管是实验室研究机器学习算法或是公司研发,都有需要自己改进算法的时候,下面就说说怎么在weka里增加改进的机器学习算法。 一 添加分类算法的流程 1 编写的分类器必须继承 Classifier或是Classifier的子类;下面用比较简单的zeroR举例说明; 2 复写接口 ...
一、kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分类问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集就是模型本身; 思想极度简单; 应用数学知识少(近乎为零); 效果少 ...
一、属性选择: 1、理论知识: 见以下两篇文章: 数据挖掘中的特征选择算法综述及基于WEKA的性能比较_陈良龙 数据挖掘中约简技术与属性选择的研究_刘辉 2、weka中的属性选择 2.1评价策略(attribute evaluator) 总的可分为filter和wrapper方法 ...
不多说,直接上干货! Weka中数据挖掘与机器学习系列之Weka系统安装(四) Weka中数据挖掘与机器学习系列之Weka3.7和3.9不同版本共存(七) 情况1 对于在Weka里,通过Weka Package Manager安装 ...
机器学习实例---1.1、k-近邻算法(简单k-nn) 一、总结 一句话总结: 【取最邻近的分类标签】:算法提取样本最相似数据(最近邻)的分类标签 【k的出处】:一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处 【k-近邻算法实例】:比如,现在我这个k值取 ...
机器学习算法 什么是程序(Program) 计算机程序,是指为了得到某种结果而可以由计算机(等具有信息处理能力的装置)执行的代码化指令序列(或者可以被自动转换成代码化指令序列的符号化指令序列或者符号化语句序列)。 通俗讲,计算机给人干活,但它不是人,甚至不如狗懂人的需要(《小羊肖恩 ...
今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教。 众所周知,极大似然估计是一种应用很广泛的参数估计方法。例如我手头有一些东北人的身高的数据,又知道身高的概率模型是高斯分布,那么利用极大化似然函数的方法可以估计出高斯分布 ...