连和概率分布 机器学习层面:直接对数据进行建模,比如根据某个变量的概率密度函数进行数据采样。在贝叶斯 ...
这几天在做用户画像,特征是用户的消费商品的消费金额,原始数据 部分 是这样的: 我们看到同一个id下面有不同的消费记录,这个数据不能直接拿来用,写了python程序来进行处理:test.py 输出结果: 现在我们来跑AE模型 Auto encoder ,简单说说AE模型,主要步骤很简单,有三层,输入 隐含 输出,把数据input进去,encode然后再decode,cost function就是o ...
2016-04-08 10:32 5 12958 推荐指数:
连和概率分布 机器学习层面:直接对数据进行建模,比如根据某个变量的概率密度函数进行数据采样。在贝叶斯 ...
原文地址:https://blog.csdn.net/marsjhao/article/details/73480859 一、什么是自编码器(Autoencoder) 自动编码器是一种数据的压缩算法,其中数据的压缩和解压缩函数是数据相关的、有损的、从样本中自动学习的。在大部分提到 ...
本笔记主要记录学习《深度学习》的总结体会。如有理解不到位的地方,欢迎大家指出,我会努力改正。 在学习《深度学习》时,我主要是通过Andrew Ng教授在http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial上提供 ...
深度自编码器(Deep Autoencoder)MATLAB解读 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 这篇文章主要讲解Hinton在2006年Science上提出的一篇文章“Reducing ...
今天我们会来聊聊用神经网络如何进行非监督形式的学习. 也就是 autoencoder, 自编码. 压缩与解压 有一个神经网络, 它在做的事情是 接收一张图片, 然后 给它打码, 最后 再从打码后的图片中还原. 太抽象啦? 行, 我们再具体点. 假设刚刚那个神经网络是这样, 对应上刚刚 ...
Pytorch中的自编码(autoencoder) 本文资料来源:https://www.bilibili.com/video/av15997678/?p=25 什么是自编码 先压缩原数据、提取出最有代表性的信息。然后处理后再进行解压。减少处理压力 通过对比白色X和黑色X的区别(cost ...
一、自编码器:降维【无监督学习】 PCA简介:【线性】原矩阵乘以过渡矩阵W得到新的矩阵,原矩阵和新矩阵是同样的东西,只是通过W换基。 自编码: 自动编码器是一种无监督的神经网络模型,它可以学习到输入数据的隐含特征,这称为编码(coding),同时用学习到的新特征可以重构出原始输入 ...
自监督模型 训练一个ae的encoder,就能把code和object对应起来,获得code。给定一个code,decoder就能输出对应的object。 Autoencoder存在什么问题? 因为作为训练数据的object是有限的,导致decoder ...