一、分类树构建(实际上是一棵递归构建的二叉树,相关的理论就不介绍了) 二、分类树项目实战 2.1 数据集获取(经典的鸢尾花数据集) 描述: Attribute Information: 1. sepal length in cm 2. sepal width ...
课程地址:https: class.coursera.org ntumltwo lecture 重要 重要 重要 一 决策树 Decision Tree 口袋 Bagging ,自适应增强 AdaBoost Bagging和AdaBoost算法再分类的时候,是让所有的弱分类器同时发挥作用。它们之间的区别每个弱分离器是否对后来的blending生成G有相同的权重。 Decision Tree是一种有 ...
2016-04-04 20:28 0 7359 推荐指数:
一、分类树构建(实际上是一棵递归构建的二叉树,相关的理论就不介绍了) 二、分类树项目实战 2.1 数据集获取(经典的鸢尾花数据集) 描述: Attribute Information: 1. sepal length in cm 2. sepal width ...
机器学习领域的决策树,但却是第一个有着复杂的统计学和概率论理论保证的决策树(这些话太学术了,引自参考文 ...
CART分类树算法 特征选择 我们知道,在ID3算法中我们使用了信息增益来选择特征,信息增益大的优先选择。在C4.5算法中,采用了信息增益比来选择特征,以减少信息增益容易选择特征值多的特征的问题。但是无论是ID3还是C4.5,都是基于信息论的熵模型的,这里面会涉及大量的对数运算。能不能简化 ...
注:本系列所有博客将持续更新并发布在github和gitee上,您可以通过github、gitee下载本系列所有文章笔记文件。 1 引言 上一篇博客中介绍了ID3和C4.5两种决策树算法,这两种决策树都只能用于分类问题,而本文要说的CART(classification ...
上一篇介绍了决策树之分类树构造的几种方法,本文主要介绍使用CART算法构建回归树及剪枝算法实现。主要包括以下内容: 1、CART回归树的介绍 2、二元切分的实现 3、总方差法划分特征 4、回归树的构建 5、回归树的测试与应用 6、剪枝算法 一、CART回归树的介绍 回归树与分类树 ...
机器学习实战---决策树CART简介及分类树实现 一:对比分类树 CART回归树和CART分类树的建立算法大部分是类似的,所以这里我们只讨论CART回归树和CART分类树的建立算法不同的地方。首先,我们要明白,什么是回归树,什么是分类树。 两者的区别在于样本输出: 除了概念 ...
https://blog.csdn.net/weixin_43383558/article/details/84303339?utm_medium=distribute.pc_relevant_t0. ...
1、决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归。不过对于一些特殊的逻辑分类会有困难。典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题。 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题。因此如何构建一棵好的决策树是研究的重点 ...