有很多,而且分为线性降维和非线性降维,本篇文章主要讲解线性降维中的主成分分析法(PCA)降维。顾名思义,就 ...
运用PCA对高维数据进行降维,有一下几个特点: 数据从高维空间降到低维,因为求方差的缘故,相似的特征会被合并掉,因此数据会缩减,特征的个数会减小,这有利于防止过拟合现象的出现。但PCA并不是一种好的防止过拟合的方法,在防止过拟合的时候,最好是对数据进行正则化 使用降维的方法,使算法的运行速度加快 减少用来存储数据的内存空间 从x i 到z i 的映射过程中,对训练数据进行降维,然后对测试数据或验证 ...
2016-03-30 09:12 0 1808 推荐指数:
有很多,而且分为线性降维和非线性降维,本篇文章主要讲解线性降维中的主成分分析法(PCA)降维。顾名思义,就 ...
转载请声明出处:http://blog.csdn.net/zhongkelee/article/details/44064401 一、PCA简介 1. 相关背景 上完陈恩红老师的《机器学习与知识发现》和季海波老师的《矩阵代数》两门课之后,颇有体会。最近在做主成分分析和奇异值分解 ...
使用PCA方法对高维的鸢尾花数据(4维3类样本)进行降维分类,部分鸢尾花数据集如下: View Code 结果如下: ...
数据集中含有太多特征时,需要简化数据。降维不是删除部分特征,而是将高维数据集映射到低维数据集,映射后的数据集更简洁,方便找出对结果贡献最大的部分特征。 简化数据的原因: 1、使得数据集更易使用 2、降低很多算法的计算开销 3、去除噪声 4、使得结果易懂 PCA:principal ...
PCA要做的事降噪和去冗余,其本质就是对角化协方差矩阵。 一.预备知识 1.1 协方差分析 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来。网上值得参考的资料也不多,这里用一个 ...
MATLAB实例:PCA降维 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. iris数据 5.1,3.5,1.4,0.2,1 4.9,3.0,1.4,0.2,1 4.7,3.2,1.3,0.2,1 ...
PCA 主成分分析方法,LDA 线性判别分析方法,可以认为是有监督的数据降维。下面的代码分别实现了两种降维方式: 结果如下 ...
Principal Component Analysis 算法优缺点: 优点:降低数据复杂性,识别最重要的多个特征 缺点:不一定需要,且可能损失有用的信息 适用数据类型:数值型数据 算法思想: 降维的好处: 使得数据集更易使用 降低 ...