Transformer: 是一个抽象类包含特征转换器, 和最终的学习模型, 需要实现transformer方法 通常transformer为一个RDD增加若干列, 最终转化成另一个RDD, 1. 特征转换器通常处理一个dataset, 把其中一列数据转化成一列新的数据。 并且把新的数据列添加到 ...
在线学习 模型随着接收的新消息,不断更新自己 而不是像离线训练一次次重新训练。 Spark Streaming 离散化流 DStream 输入源:Akka actors 消息队列 Flume Kafka http: spark.apache.org docs latest streaming programming guide.html 类群 lineage :应用到RDD上的转换算子和执行算子 ...
2016-03-25 20:53 0 2289 推荐指数:
Transformer: 是一个抽象类包含特征转换器, 和最终的学习模型, 需要实现transformer方法 通常transformer为一个RDD增加若干列, 最终转化成另一个RDD, 1. 特征转换器通常处理一个dataset, 把其中一列数据转化成一列新的数据。 并且把新的数据列添加到 ...
第一章 mesos spark shell SPARK-shell (1)修改spark/conf/spark-env.sh ,增加以下内容 (2)运行命令: shell ./bin/spark-shell --master mesos://host:5050 (3)代码 ...
将Mahout on Spark 中的机器学习算法和MLlib中支持的算法统计如下: 主要针对MLlib进行总结 分类与回归 分类和回归是监督式学习; 监督式学习是指使用有标签的数据(LabeledPoint)进行训练,得到模型后,使用测试数据预测结果。其中标签数据是指已知 ...
PCA(主成分分析法,Principal Components Analysis) SVD(奇异值分解法,Singular Value Decomposition) http://vi ...
本章导读 机器学习(machine learning, ML)是一门涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多领域的交叉学科。ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识、新技能,并重组已学习的知识结构使之不断改善自身。 MLlib是Spark提供的可扩展的机器学习库 ...
Spark机器学习库现支持两种接口的API:RDD-based和DataFrame-based,Spark官方网站上说,RDD-based APIs在2.0后进入维护模式,主要的机器学习API是spark-ml包中的DataFrame-based API,并将在3.0后完全移除RDD-based ...
Spark提供了常用机器学习算法的实现, 封装于spark.ml和spark.mllib中. spark.mllib是基于RDD的机器学习库, spark.ml是基于DataFrame的机器学习库. 相对于RDD, DataFrame拥有更丰富的操作API, 可以进行更灵活的操作. 目前 ...
https://spark.rstudio.com/guides/mlib.html Spark机器学习库 sparklyr提供了Spark分布式机器学习库的绑定。特别是,允许你访问 spark.ml 包提供的机器学习例程。结合 sparklyr的 dplyr 接口,您可以轻松地在 Spark ...