准备环境 anaconda ipython PYTHONPATH 运行环境 数据 1. 获取原始数据 1682 u'1|24|M|techn ...
分类模型的预测目标是:类别编号 回归模型的预测目标是:实数变量 回归模型种类 线性模型 最小二乘回归模型 应用L 正则化时 岭回归 ridge regression 应用L 正则化时 LASSO Least Absolute Shrinkage and Selection Operator 决策树 不纯度度量方法:方差 准备数据 archive.ics.uci.edu ml machine le ...
2016-03-25 20:49 1 7088 推荐指数:
准备环境 anaconda ipython PYTHONPATH 运行环境 数据 1. 获取原始数据 1682 u'1|24|M|techn ...
逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1。 MLLib的逻辑回归类有两个:LogisticRegressionWithSGD和LogisticRegressionWithLBFGS ...
线性回归算法,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。 1. 梯度下降法 线性回归可以使用最小二乘法,但是速度比较慢,因此一般使用梯度下降法(Gradient Descent),梯度下降法又分为批量梯度下降法(Batch Gradient ...
AS WE ALL KNOW,学机器学习的一般都是从python+sklearn开始学,适用于数据量不大的场景(这里就别计较“不大”具体指标是啥了,哈哈) 数据量大了,就需要用到其他技术了,如:spark, tensorflow,当然也有其他技术,此处略过一坨字... 先来看看 ...
线性回归, 是回归分析中的一种, 其表示自变量与因变量之间存在线性关系. 回归分析是从数据出发, 考察变量之间的数量关系, 并通过一定的数学关系式将这种关系描述出来, 再通过关系式来估计某个变量的取值, 同时给出该估计的可靠程度. 下面我们从一元线性回归开始说起. 1. 一元线性回归 在回归 ...
在前面所介绍的线性回归, 岭回归和Lasso回归这三种回归模型中, 其输出变量均为连续型, 比如常见的线性回归模型为: 其写成矩阵形式为: 现在这里的输出为连续型变量, 但是实际中会有"输出为离散型变量"这样的需求, 比如给定特征预测是否离职(1表示离职, 0表示不离职). 显然 ...
1. 线性回归 什么是回归? 从大量的函数结果和自变量反推回函数表达式的过程就是回归。线性回归是利用数理统计中回归分析来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。 一元线性回归: 只包括一个自变量()和一个因变量(),且二者的关系可用一条直线近似表示,这种回归分析称为 ...
目录 线性回归原理 线性回归代码(Spark Python) 线性回归原理 详见博文:http://www.cnblogs.com/itmorn/p/7873083.html 返回 ...