如题,比opencv自带的实现效果好 ...
图像非局部均值滤波的原理和空间局部滤波不相同,局部空间滤波实质上是在频域上对图像进行滤波处理,而非局部均值滤波利用了噪声的非相关的特性。如下图所示,在一幅图像中,具有相同像素的图像块是很多的,而其中的噪声是不相关的。 我们假设无噪声像素块为f x,y ,加性噪声为n x,y ,那么加噪后的像素块为g x,y f x,y n x,y 我们把多个像素块进行叠加然后取平均值得到 对该像素块取均值得到: ...
2016-03-21 20:02 0 6558 推荐指数:
如题,比opencv自带的实现效果好 ...
Non-Local Means 非局部均值去噪滤 传统的高斯滤波,均值滤波,为局部滤波,即对周围邻域的点加权生成当前点,加权因子反应出周围点对当前点的影响,这些加权因子基于某种理论获得,如高斯滤波基于低通,均值滤波认为点与点之间的影响是均匀的。 1.经典的Non-Local Means ...
非局部均值去噪(NL-means)一文介绍了NL-means基本算法,同时指出了该算法效率低的问题,本文将使用积分图像技术对该算法进行加速。 假设图像共像个素点,搜索窗口大小,领域窗口大小, 计算两个矩形邻域间相似度的时间为,对于每个像素点需要计算它与搜索窗口内个像素间的相似度 ...
一. 均值滤波简介和原理 均值滤波,是图像处理中常用的手段,从频率域观点来看均值滤波是一种低通滤波器,高频信号将会去掉。均值滤波可以帮助消除图像尖锐噪声,实现图像平滑,模糊等功能。理想的均值滤波是用每个像素和它周围像素计算出来的平均值替换图像中每个像素 ...
图像处理领域的线性滤波器主要包括均值滤波和高斯滤波等平滑滤波器,此外,还有Sobel算子、Laplas算子和梯度运算等锐化滤波器。线性滤波通常的处理方法是利用一个指定尺寸的掩模(mask)对图像进行卷积,通常,这个掩模(mask)也可以称为滤波器(filter)、 核(kernel)、模板 ...
一、实验目的 掌握opencv如何实现图像的均值滤波、中值滤波和高斯滤波。 二、实验内容 1.题目描述 对图片test.png进行图像的均值滤波、中值滤波和高斯滤波,还有高斯边缘检测,下面是test.png原图片。 下面需要达到的效果 ...
目录 卷积计算 均值滤波 高斯滤波 图像模糊,也可以称为图像滤波,主要是为了去除图像中明显的噪声点; 这一节主要介绍两种滤波方式: 均值滤波和高斯滤波; 重点介绍一下两者的原理,并使用OpenCV提供的API进行测试; 卷积计算 其实,不管是均值 ...
non-local Means(非局部均值)降噪算法及快速算法原理与 Non-Local Means算法原理:Non-Local Means顾名思义,这是一种非局部平均算法。何为局部平均滤波算法呢?那是在一个目标像素周围区域平滑取均值的方法,所以非局部均值滤波就意味着它使用图像中的所有像素 ...