机器学习-线性回归 本文代码均来自于《机器学习实战》 分类算法先说到这里,接下来说一个回归算法 线性回归 线性回归比较简单,就不怎么说了,要是模型记不得了就百度一下吧,这里列一下公式就直接上代码了 线性回归的一个问题就是可能会出现欠拟合现象,因为它求的是具有最小均方误差 ...
看下面三幅图,x 轴是房间面积,y 轴是房价。 左图是 y x 拟合数据集的结果。可以看到数据并不贴靠在直线上,所以拟合并不好。 中图是y x x 拟合数据集的结果,拟合得还不错。 右图是y x x x x x 拟合数据集的结果,虽然曲线跟数据拟合得极好,但我们这是一个好的预测。 左图被称为欠拟合,数据并没有被模型捕获。右图被称为过拟合。 由以上例子可见,特征的选择对于保证学习算法好的性能是很重要 ...
2016-03-17 21:36 0 2657 推荐指数:
机器学习-线性回归 本文代码均来自于《机器学习实战》 分类算法先说到这里,接下来说一个回归算法 线性回归 线性回归比较简单,就不怎么说了,要是模型记不得了就百度一下吧,这里列一下公式就直接上代码了 线性回归的一个问题就是可能会出现欠拟合现象,因为它求的是具有最小均方误差 ...
本笔记主要记录学习《机器学习》的总结体会。如有理解不到位的地方,欢迎大家指出,我会努力改正。 在学习《机器学习》时,我主要是通过Andrew Ng教授在mooc上提供的《Machine Learning》课程,不得不说Andrew Ng老师在讲授这门课程时,真的很用心,特别是编程 ...
输出是一个连续的数值。 模型表示 对于一个目标值,它可能受到多个特征的加权影响。例如宝可梦精灵的进化的 cp 值,它不仅受到进化前的 cp 值的影响,还可能与宝可梦的 hp 值、类型、高度以及重量相关。因此,对于宝可梦进化后的 cp 值,我们可以用如下线性公式来表示: \[y=b+ ...
回归是统计学中最有力的工具之一。机器学习监督学习算法分为分类算法和回归算法两种,其实就是根据类别标签分布类型为离散型、连续性而定义的。回归算法用于连续型分布预测,针对的是数值型的样本,使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,因为这样可以预测连续型数据而不仅仅是离散的类别 ...
一、决策树与随机森林 1、信息论基础 香农:奠定了现代信息论基础,定义信息的单位比特。 32支球队,预测世界杯冠军,不知道任何信息的情况下,使用二分法最少需要猜5次。(log32=5) 5 ...
前言 本系列为机器学习算法的总结和归纳,目的为了清晰阐述算法原理,同时附带上手代码实例,便于理解。 目录 k近邻(KNN) 决策树 线性回归 逻辑斯蒂回归 朴素贝叶斯 支持向量机(SVM ...
Content: 1. Linear Regression 1.1 Linear Regression with one variable 1.1.1 Gradient descen ...
多元线性回归 一元线性回归只有一个特征$x$,而多元线性回归可以有多个特征$x_1, x_2, \ldots, x_n$ 假设 (Hypothesis):$h_\theta(x)=\theta^Tx=\theta_0x_0+\theta_1x_1+\ldots+\theta_nx_n$ 参数 ...