目的: 提升深度神经网络的性能。 一般方法带来的问题: 增加网络的深度与宽度。 带来两个问题: (1)参数增加,数据不足的情况容易导致过拟合 (2)计算资源要求高,而且在训练过程中会 ...
GoogLeNet Going deeper with convolutions Inception结构 目前最直接提升DNN效果的方法是increasing their size,这里的size包括depth和width两方面。在有足够的labeled training data 时这种方法是最简单以及稳妥的方法来获得一个高质量的模型。但是往往实际中大的网络会有更多的参数,当training ...
2016-03-11 15:03 0 5997 推荐指数:
目的: 提升深度神经网络的性能。 一般方法带来的问题: 增加网络的深度与宽度。 带来两个问题: (1)参数增加,数据不足的情况容易导致过拟合 (2)计算资源要求高,而且在训练过程中会 ...
论文地址 在该论文中作者提出了一种被称为Inception Network的深度卷积神经网络,它由若干个Inception modules堆叠而成。Inception的主要特点是它能提高网 ...
of the art. 论文 Going deeper with convolutions 就是对应该网络发 ...
本文介绍的是著名的网络结构GoogLeNet及其延伸版本,目的是试图领会其中的思想而不是单纯关注结构。 GoogLeNet Incepetion V1 Motivation Architectural Details GoogLeNet ...
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection 当前方法的问题 使用VGG、ResNet等为图像分类任务设计的网络提取深层特征,但是,这些骨干网络最初是为图像分类任务设计的,它们提取的特征 ...
网络结构解读之inception系列二:GoogLeNet(Inception V1) inception系列的开山之作,有网络结构设计的初期思考。 Going deeper with convolutions motivations ...
inception系列的开山之作,有网络结构设计的初期思考。 Going deeper with convolutions motivations: 提高模型性能的最直接方式:1.加深(增加层)2.加宽(增加单层的神经元个数) 带来的两个弊端:1.大规模的参数 ...
Inception v1 论文:《Going deeper with convolutions》 在较低的层(靠近输入的层)中,相关单元更侧重提取局部区域的信息。因此使用1x1的特征可以保存这些特征,从而与其他支路提取的特征进行融合。 3x3和5x5的卷积是想要提取不同尺度的特征,3x3 ...