不同值的概率)吗?与其采用解析的方法去算,去把所有其他的变量边际掉,那干脆采用模拟的方法,让这个消息传递 ...
概率图模型G V,E 由节点V和边E构成。在之前马尔科夫模型相关的博客中,我谈到马尔科夫模型的本质是当两个人交流后,其意见 两个随机变量 同意 与不同意 的概率组合。而势函数表达的是两个意见相同或者相左的程度。 我们搞的那么麻烦,最后想要得到的不就是每个意见正确与否 随机变量取不同值的概率 吗 与其采用解析的方法去算,去把所有其他的变量边际掉,那干脆采用模拟的方法,让这个消息传递跑起来,把系统迭 ...
2016-01-20 22:18 0 4811 推荐指数:
不同值的概率)吗?与其采用解析的方法去算,去把所有其他的变量边际掉,那干脆采用模拟的方法,让这个消息传递 ...
在之前的消息传递算法中,谈到了聚类图模型的一些性质。其中就有消息不能形成闭环,否则会导致“假消息传到最后我自己都信了”。为了解决这种问题,引入了一种称为团树(clique tree)的数据结构,树模型没有图模型中的环,所以此模型要比图模型更健壮,更容易收敛。 1.团树模型 链模型是一种 ...
基于采样的推理算法利用的思想是 概率 = 大样本下频率。故在获得图模型以及CPD的基础上,通过设计采样算法模拟事件发生过程,即可获得一系列事件(联合概率质量函数)的频率,从而达到inference的目的。 1、采样的做法 使用采样算法对概率图模型进行随机变量推理的前提是已经获得CPD ...
中。在医疗诊断系统中,存在包括病症,症状等许多随机变量,使用VE或者消息传递之类的推理手段确实可以获得 ...
Koller 教授把决策作为一种单独的模块进行讲解,但我认为,决策和推理本质上是一样的,都是在假设已知CPD或者势函数的情况下对模型给出结论。 1、决策==逐利 决策的基本思想很intuitive,并且非常有用。在赌博行为中,最后获得的钱与硬币的正反,赌注的大小有关。硬币的正反显然是 ...
概率图的一个重要作用是进行推理,针对某个随机变量,告诉我们它到底有没有可能,有多大可能发生。之前在representation相关的内容中,我们更多的关心如何利用概率图减少联合分布的计算量。inference相关的章节就是要介绍如何从联合概率中获得单个随机变量的概率。 1.链状变量消除 ...
目录 Node Classification Probabilistic Relational Classifier Iterative Classif ...
CPD是conditional probability distribution的缩写,翻译成中文叫做 条件概率分布。在概率图中,条件概率分布是一个非常重要的概念。因为概率图研究的是随机变量之间的练习,练习就是条件,条件就要求条件概率。 对于简单的条件概率而言,我们可以用一个条件概率表 ...