在之前的消息传递算法中,谈到了聚类图模型的一些性质。其中就有消息不能形成闭环,否则会导致“假消息传到最后我自己都信了”。为了解决这种问题,引入了一种称为团树(clique tree)的数据结构,树模型没有图模型中的环,所以此模型要比图模型更健壮,更容易收敛。 1.团树模型 链模型是一种 ...
概率图的一个重要作用是进行推理,针对某个随机变量,告诉我们它到底有没有可能,有多大可能发生。之前在representation相关的内容中,我们更多的关心如何利用概率图减少联合分布的计算量。inference相关的章节就是要介绍如何从联合概率中获得单个随机变量的概率。 .链状变量消除 对于给定的联合分布函数P A,B,C,D,E ,如果想要知道P E ,只需要将A,B,C,D边际掉。假设P E ...
2016-01-17 20:32 0 4189 推荐指数:
在之前的消息传递算法中,谈到了聚类图模型的一些性质。其中就有消息不能形成闭环,否则会导致“假消息传到最后我自己都信了”。为了解决这种问题,引入了一种称为团树(clique tree)的数据结构,树模型没有图模型中的环,所以此模型要比图模型更健壮,更容易收敛。 1.团树模型 链模型是一种 ...
MAP 是最大后验概率的缩写。后验概率指的是当有一定观测结果的情况下,对其他随机变量进行推理。假设随机变量的集合为X ,观察到的变量为 e, W = X-e , AP = P(W|e). 后验概率和联合概率是不同的两个概念。事实上,后验概率更接近推理本身的“意义”,并且被越来越多的用于诊断系统 ...
基于采样的推理算法利用的思想是 概率 = 大样本下频率。故在获得图模型以及CPD的基础上,通过设计采样算法模拟事件发生过程,即可获得一系列事件(联合概率质量函数)的频率,从而达到inference的目的。 1、采样的做法 使用采样算法对概率图模型进行随机变量推理的前提是已经获得CPD ...
Koller 教授把决策作为一种单独的模块进行讲解,但我认为,决策和推理本质上是一样的,都是在假设已知CPD或者势函数的情况下对模型给出结论。 1、决策==逐利 决策的基本思想很intuitive,并且非常有用。在赌博行为中,最后获得的钱与硬币的正反,赌注的大小有关。硬币的正反显然是 ...
概率图模型G(V,E)由节点V和边E构成。在之前马尔科夫模型相关的博客中,我谈到马尔科夫模型的本质是当两个人交流后,其意见(两个随机变量)同意0与不同意1的概率组合。而势函数表达的是两个意见相同或者相左的程度。 我们搞的那么麻烦,最后想要得到的不就是每个意见正确与否(随机变量取不同值 ...
理论;3、概率图模型。有这三种方法则可以对大部分学术问题进行建模,无论什么层面或是类别的问题,总能往这三种框架里塞 ...
CPD是conditional probability distribution的缩写,翻译成中文叫做 条件概率分布。在概率图中,条件概率分布是一个非常重要的概念。因为概率图研究的是随机变量之间的练习,练习就是条件,条件就要求条件概率。 对于简单的条件概率而言,我们可以用一个条件概率表 ...
对数线性模型是无向图中经常使用的一种模型。其利用特征函数以及参数的方式对势函数进行定义,可获得较好的效果。在之前有向图的学习中,我们发现可以利用d-seperet,充分统计,狄利克雷函数等方式来很优雅的获得参数估计的解析解。但是在无向图中,这些优越的条件都不复存在。而无向图在现实条件下的使用 ...