原文:图像分析之梯度L0范数平滑

本文是Image Smoothing via L Gradient Minimization一文的笔记。L GradientSmoothing的formulation与TV和WLS等基于变分的模型很相似,所以本文重在推导。读者需注意,本文采用的符号标记与原论文不同,笔者觉得本文采用的符号标记表达力更强些,且不容易产生歧义。本文重写了原论文中的问题描述,推导了原论文中的公式 ,笔者还推导了一个新的向 ...

2016-01-12 12:07 16 4380 推荐指数:

查看详情

L0L1与L2范数、核范数(转)

L0L1与L2范数、核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知识有限,以下都是我一些浅显的看法 ...

Sun Oct 26 04:53:00 CST 2014 1 27188
L0/L1/L2范数的联系与区别

L0/L1/L2范数的联系与区别 标签(空格分隔): 机器学习 最近快被各大公司的笔试题淹没了,其中有一道题是从贝叶斯先验,优化等各个方面比较L0L1、L2范数的联系与区别。 L0范数 L0范数表示向量中非零元素的个数: \(||x||_{0} = \#(i)\ with\ \ x_ ...

Sun Sep 18 00:45:00 CST 2016 0 33439
『科学计算』L0L1与L2范数_理解

『教程』L0L1与L2范数 一、L0范数L1范数、参数稀疏 L0范数是指向量中非0的元素的个数。如果我们用L0范数来规则化一个参数矩阵W的话,就是希望W的大部分元素都是0,换句话说,让参数W是稀疏的。   既然L0可以实现 ...

Tue Dec 05 07:53:00 CST 2017 1 7355
深度学习——L0L1及L2范数

才能保证测试误差也小,而模型简单就是通过规则函数来实现的。 规则化项可以是模型参数向量的范数。如:L ...

Mon Nov 19 19:36:00 CST 2018 0 1434
L0/L1/L2范数的联系与区别

范数(norm) 数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。 这里简单地介绍以下几种向量范数的定义和含义 1、 L-P范数 与闵可夫斯基 ...

Mon Dec 17 21:57:00 CST 2018 0 1299
L0L1、L2范数正则化

一、范数的概念 向量范数是定义了向量的类似于长度的性质,满足正定,齐次,三角不等式的关系就称作范数。 一般分为L0L1、L2与L_infinity范数。 二、范数正则化背景 1. 监督机器学习问题无非就是“minimizeyour error while ...

Thu Oct 31 23:47:00 CST 2019 0 440
机器学习中的规则化范数(L0, L1, L2, 核范数)

目录: 一、L0L1范数 二、L2范数 三、核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知识有限 ...

Mon May 05 21:12:00 CST 2014 6 6753
机器学习中的范数规则化之(一)L0L1与L2范数

今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正。谢谢 ...

Wed Aug 17 17:38:00 CST 2016 4 22102
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM