马尔科夫随机场(MRF)模型是一种描述图形结构的概率模型,是一种较好的描述纹理的方法。它是建立在MRF模型和Bayes估计的基础上,按照统计决策和估计理论中的最优准则确定问题的解。其突出的特点是通过适当定义的邻域系统引入结构信息,提供了一种一般用来表达空间上相关随机变量之间相互作用的模型,由此所生 ...
随机过程: 描写叙述某个空间上粒子的随机运动过程的一种方法。 它是一连串随机事件动态关系的定量描写叙述。 随机过程与其他数学分支,如微分方程 复变函数等有密切联系。是自然科学 project科学及社会科学等领域研究随机现象的重要工具。 马尔科夫随机过程: 是随机过程的一种,其原始模型为马尔科夫链,由俄国数学家马尔科夫于 年提出。 其主要特征是:在已知眼下状态 如今 的条件下,它未来的变化 将来 ...
2016-01-09 16:58 1 2607 推荐指数:
马尔科夫随机场(MRF)模型是一种描述图形结构的概率模型,是一种较好的描述纹理的方法。它是建立在MRF模型和Bayes估计的基础上,按照统计决策和估计理论中的最优准则确定问题的解。其突出的特点是通过适当定义的邻域系统引入结构信息,提供了一种一般用来表达空间上相关随机变量之间相互作用的模型,由此所生 ...
马尔科夫随机场是典型的马尔科夫网(MRF),是一个可以由无向图表示的概率分布模型。图中每个结点表示一个或者一组变量,结点之间的边表示两个变量之间的依赖关系。在马尔科夫随机场中存在一组势函数(定义在变量子集上的非负实函数),也称为因子,主要是用于定义概率分布函数。 1、模型的定义 ...
(Markov Random Field)马尔科夫随机场,本质上是一种概率无向图模型 下面从概率图模型说起,主要参考PR&ML 第八章 Graphical Model (图模型) 定义:A graph comprises nodes (also called vertices ...
分阶领域系统与子团 马尔科夫随机场的通俗解释 马尔可夫随机场(Marko ...
再一次遇到了Markov模型与条件随机场的问题,学而时习之,又有了新的体会。所以我决定从头开始再重新整理一次马尔科夫模型与条件随机场。 马尔科夫模型是一种无向概率图模型,其与马尔科夫链并不是很一样。马尔科夫链的节点是状态,边是转移概率,是template CPD的一种有向状态转移表达 ...
上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立。本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) 下面附上,上述实验的matlab代码。没有插入matlab选项 ...
1、策略与环境模型 强化学习是继监督学习和无监督学习之后的第三种机器学习方法。强化学习的整个过程如下图所示: 具体的过程可以分解为三个步骤: 1)根据当前的状态 $s_t ...
马尔可夫随机场(Markov Random Field,简称MRF)是典型的马尔可夫网,这是一种著名的无向图模型。图中每个结点表示一个或一组变量,结点之间的边表示两个变量之间的依赖关系。马尔可夫随机场有一组势函数(potential functions),亦称“因子”(factor),这是定义 ...