动机(Motivation) 对于非线性分类问题,如果用多元线性回归进行分类,需要构造许多高次项,导致特征特多学习参数过多,从而复杂度太高。 神经网络(Neural Network) 一个简单的神经网络如下图所示,每一个圆圈表示一个神经元,每个神经元接收上一层神经元的输出作为其输入 ...
这一章可能是Andrew Ng讲得最不清楚的一章,为什么这么说呢 这一章主要讲后向传播 Backpropagration, BP 算法,Ng花了一大半的时间在讲如何计算误差项 delta ,如何计算 Delta 的矩阵,以及如何用Matlab去实现后向传播,然而最关键的问题 为什么要这么计算 前面计算的这些量到底代表着什么,Ng基本没有讲解,也没有给出数学的推导的例子。所以这次内容我不打算照着公开 ...
2015-12-27 22:44 7 8632 推荐指数:
动机(Motivation) 对于非线性分类问题,如果用多元线性回归进行分类,需要构造许多高次项,导致特征特多学习参数过多,从而复杂度太高。 神经网络(Neural Network) 一个简单的神经网络如下图所示,每一个圆圈表示一个神经元,每个神经元接收上一层神经元的输出作为其输入 ...
支持向量机(Support Vector Machine, SVM) 考虑logistic回归,对于$y=1$的数据,我们希望其$h_\theta(x) \approx 1$,相应的$\theta^ ...
多元线性回归 一元线性回归只有一个特征$x$,而多元线性回归可以有多个特征$x_1, x_2, \ldots, x_n$ 假设 (Hypothesis):$h_\theta(x)=\theta^T ...
Logistic 回归 通常是二元分类器(也可以用于多元分类),例如以下的分类问题 Email: spam / not spam Tumor: Malignant / benign ...
机器学习目前比较热,网上也散落着很多相关的公开课和学习资源,这里基于课程图谱的机器学习公开课标签做一个汇总整理,便于大家参考对比。 1、Coursera上斯坦福大学Andrew Ng教授的“机器学习公开课”: 机器学习入门课程首选,斯坦福大学教授,Coursera联合创始人 ...
初步介绍 监督式学习: 给定数据集并且知道其正确的输出应该是怎么样的,即有反馈(feedback),分为 回归 (Regressioin): map输入到连续的输出值。 分类 (Classification):map输出到离散的输出值。 非监督式学习: 给定数据集,并不知道 ...
批梯度下降 (Batch Gradient Descent) 以线性回归为例,用梯度下降算法进行参数更新的公式为$$\theta_j=\theta_j-\alpha\frac{1}{m}\sum\l ...
在有监督学习里面有几个逻辑上的重要组成部件[3],初略地分可以分为:模型,参数 和 目标函数。(此部分转自 XGBoost 与 Boosted Tree) 一、模型和参数 模型指给定输入xi如何去预测 输出 yi。我们比较常见的模型如线性模型(包括线性回归和logistic ...