之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结。这里我们就从实战的角度来看朴素贝叶斯类库。重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择。 1. scikit-learn 朴素贝叶斯类库概述 朴素贝叶斯是一类比较简单的算法 ...
. . Naive Bayes 朴素贝叶斯是一种监督学习的算法,基于贝叶斯公式和 朴素 的假设 特征之间相互独立。给出分类变量y和相互之间独立的特征x 到xn,贝叶斯公式如下: 根据独立性假设有 对于所有的i,它们的关系可以表示为 上面的公式中,P x ,x ,...,xn 为一个常数,因此可以用下面的判别规则: 我们用最大后验概率 MAP 估计 P y 和 P xi y 后者为测试集中分类 y ...
2015-12-25 18:10 1 3975 推荐指数:
之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结。这里我们就从实战的角度来看朴素贝叶斯类库。重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择。 1. scikit-learn 朴素贝叶斯类库概述 朴素贝叶斯是一类比较简单的算法 ...
当我们想到机器学习时,首先想到的语言是 Python 或 R。这是可以理解的,因为它们为我们提供了实现这些算法的许多可能性。 然而,我每天在用 C# 工作,我的注意力被 ML.NET 所吸引。在本文中,我想演示如何使用 Scikit-learn 实现 Python 语言中的 Naive ...
条件概率 •设A,B为任意两个事件,若P(A)>0,我们称在已知事件A发生的条件下,事件B发生的概率为条件概率,记为P(B|A),并定义 乘法公式 •如果P(A)>0 ...
最近一直在看机器学习相关的算法,今天我们学习一种基于概率论的分类算法—朴素贝叶斯。本文在对朴素贝叶斯进行简单介绍之后,通过Python编程加以实现。 一 朴素贝叶斯概述 ...
的条件下都是条件独立的。 1、朴素贝叶斯朴素在哪里? 简单来说:利用贝叶斯定理求解联合概率P( ...
概率是一种基于事件发生可能性来描述未来趋势的数学工具。其本质就是通过过去已经发生的事情来推断未来事件,并且将这种推断放在一系列的公理化的数学空间当中进行考虑。例如,抛一枚均质硬币,正面向上的可能性多大 ...
简介 朴素贝叶斯是一种基于概率进行分类的算法,跟之前的逻辑回归有些相似,两者都使用了概率和最大似然的思想。但与逻辑回归不同的是,朴素贝叶斯通过先验概率和似然概率计算样本在每个分类下的概率,并将其归为概率值最大的那个分类。朴素贝叶斯适用于文本分类、垃圾邮件处理等NLP下的多分类问题。 核心 ...
概念简介: 朴素贝叶斯基于贝叶斯定理,它假设输入随机变量的特征值是条件独立的,故称之为“朴素”。简单介绍贝叶斯定理: 乍看起来似乎是要求一个概率,还要先得到额外三个概率,有用么?其实这个简单的公式非常贴切人类推理的逻辑,即通过可以观测的数据,推测不可观测的数据。举个例子,也许你在办 ...