对显著性检测的一些了解: 一般认为,良好的显著性检测模型应至少满足以下三个标准: 1)良好的检测:丢失实际显著区域的可能性以及将背景错误地标记为显著区域应该是低的; 2)高分辨率:显著图应该具有高分辨率或全分辨率以准确定位突出物体并保留原始图像信息; 3)计算效率:作为其他复杂过程的前端 ...
这篇文章是图像显著性领域最具代表性的文章,是在 年Itti等人提出来的,到目前为止引用的次数超过了 ,是多么可怕的数字,在它的基础上发展起来的有关图像显著性论文更是数不胜数,论文的提出主要是受到灵长类动物早期视觉系统的神经结构和行为所启发而产生了视觉注意系统。灵长类动物具有很强的实时处理复杂场景的能力,视觉信息进行深入的处理之前,对所收集到的感觉信息进行选择,这些选择可能减少场景理解的复杂性,这 ...
2015-12-18 20:57 1 3585 推荐指数:
对显著性检测的一些了解: 一般认为,良好的显著性检测模型应至少满足以下三个标准: 1)良好的检测:丢失实际显著区域的可能性以及将背景错误地标记为显著区域应该是低的; 2)高分辨率:显著图应该具有高分辨率或全分辨率以准确定位突出物体并保留原始图像信息; 3)计算效率:作为其他复杂过程的前端 ...
视觉显著性检测(Visual saliency detection)指通过智能算法模拟人的视觉特点,提取图像中的显著区域(即人类感兴趣的区域)。 视觉注意机制(Visual Attention Mechanism,VA),即面对一个场景时,人类自动地对感兴趣区域进行处理而选择性地忽略不感兴趣区域 ...
内容转移到博客文章系列:显著性检测 1.简介 视觉显著性包括从下而上和从上往下两种机制。从下而上也可以认为是数据驱动,即图像本身对人的吸引,从上而下则是在人意识控制下对图像进行注意。科研主要做的是从下而上的视觉显著性,而从上而下的视觉显著性由于对人的大脑结构作用了解还很肤浅,无法深刻的揭示作用 ...
Saliency Detection via Graph-Based Manifold Ranking https://www.yuque.com/lart/papers 本文不是按照之前的论文那样, 考虑显著性目标与背景之间的对比度, 而是通过使用流形排序方法, 来使用前景 ...
图像显著性检测-Saliency Detection via Graph-Based Manifold Ranking 显著性检测是很多计算机处理的预处理,有限的计算机资源来处理数以亿计的图片,不仅耗资巨大,而且往往时间复杂度高。 那么如果说将这些资源 ...
1、A model of saliency-based visual attention for rapid scene analysis 受早期灵长类动物早期视觉系统的神经结构和行为所启发的视觉注意系统。,他将图像特征组合成显著性图。 模型: *采用二进高斯金字塔产生9个空间比例:S0 ...
Gene Ontology(GO)是基因功能国际标准分类体系。GO富集分析是对差异基因等按GO分类,并对分类结果进行基于离散分布的显著性分析、错判率分析、富集度分析,得到与实验目的有显著联系的、低误判率的、靶向性的基因功能分类,该分类即导致样本性状差异的最重要的功能差别。在芯片的数据分析中 ...
步骤1:先定义KLdiv函数: function score = KLdiv(saliencyMap, fixationMap) % saliencyMap is the saliency map % fixationMap is the human fixation map map1 ...