原文:机器学习公开课笔记(2):多元线性回归

多元线性回归 一元线性回归只有一个特征 x ,而多元线性回归可以有多个特征 x , x , ldots, x n 假设 Hypothesis : h theta x theta Tx theta x theta x ldots theta nx n 参数 Parameters : theta , theta , ldots, theta n 代价函数 Cost function : J theta ...

2015-12-16 10:17 0 6088 推荐指数:

查看详情

机器学习公开课笔记(1):机器学习简介及一元线性回归

初步介绍 监督式学习: 给定数据集并且知道其正确的输出应该是怎么样的,即有反馈(feedback),分为 回归 (Regressioin): map输入到连续的输出值。 分类 (Classification):map输出到离散的输出值。 非监督式学习: 给定数据集,并不知道 ...

Mon Dec 07 19:38:00 CST 2015 0 3270
机器学习公开课笔记(3):Logistic回归

Logistic 回归 通常是二元分类器(也可以用于多元分类),例如以下的分类问题 Email: spam / not spam Tumor: Malignant / benign 假设 (Hypothesis):$$h_\theta(x) = g(\theta^Tx ...

Tue Dec 22 07:27:00 CST 2015 0 3039
Andrew Ng机器学习公开课笔记 -- 线性回归和梯度下降

网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个例子,比如,想用面积和卧室个数来预测房屋的价格 训练集如下 首先,我们假设为线性模型 ...

Thu Mar 27 01:40:00 CST 2014 4 7989
机器学习公开课笔记(7):支持向量机

支持向量机(Support Vector Machine, SVM) 考虑logistic回归,对于$y=1$的数据,我们希望其$h_\theta(x) \approx 1$,相应的$\theta^Tx \gg 0$; 对于$y=0$的数据,我们希望$h_\theta(x) \approx ...

Thu Jan 14 06:33:00 CST 2016 0 2489
机器学习公开课汇总

机器学习目前比较热,网上也散落着很多相关的公开课学习资源,这里基于课程图谱的机器学习公开课标签做一个汇总整理,便于大家参考对比。 1、Coursera上斯坦福大学Andrew Ng教授的“机器学习公开课”: 机器学习入门课程首选,斯坦福大学教授,Coursera联合创始人 ...

Mon Sep 29 07:45:00 CST 2014 0 3649
机器学习公开课笔记(10):大规模机器学习

批梯度下降 (Batch Gradient Descent) 以线性回归为例,用梯度下降算法进行参数更新的公式为$$\theta_j=\theta_j-\alpha\frac{1}{m}\sum\limits_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})x_j^{(i ...

Wed Jan 27 00:12:00 CST 2016 0 1707
LR 算法总结--斯坦福大学机器学习公开课学习笔记

在有监督学习里面有几个逻辑上的重要组成部件[3],初略地分可以分为:模型,参数 和 目标函数。(此部分转自 XGBoost 与 Boosted Tree) 一、模型和参数   模型指给定输入xi如何去预测 输出 yi。我们比较常见的模型如线性模型(包括线性回归和logistic ...

Sun Jul 21 23:30:00 CST 2019 0 401
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM