这份是本人的学习笔记,课程为网易公开课上的斯坦福大学公开课:傅里叶变换及其应用。 上节课讲到,在对非周期函数进行傅里叶分析时,有 $C_k = \displaystyle{\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-2\pi i ...
这份是本人的学习笔记,课程为网易公开课上的斯坦福大学公开课:傅里叶变换及其应用。 卷积在滤波中的应用 浑浊度 Turbidity 研究是关于测量水的清澈度的研究。大致方法是把光传感器放置到深水区域,然后测量光线的昏暗程度,测量出来的值将随时间变化。 由于没有真实数据,下面用mathematica比较粗糙地模拟水域的浑浊度数据 能看到信号主要集中在低频,我们需要把毛刺去除,也就是把高频去除,在频域进 ...
2015-12-02 22:47 0 3357 推荐指数:
这份是本人的学习笔记,课程为网易公开课上的斯坦福大学公开课:傅里叶变换及其应用。 上节课讲到,在对非周期函数进行傅里叶分析时,有 $C_k = \displaystyle{\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-2\pi i ...
这份是本人的学习笔记,课程为网易公开课上的斯坦福大学公开课:傅里叶变换及其应用。 在傅里叶变换中有时域$f(t)$,频域$F(s)$,他们的对应关系按照如下方式标记: $f(t) \ \leftrightarrow \ F(s)$ 时延性(Delayed) $f(t-b ...
这份是本人的学习笔记,课程为网易公开课上的斯坦福大学公开课:傅里叶变换及其应用。 热方程后续 上节课推导出热方程的傅里叶系数: $C_k(t) = C_k(0)e^{-2\pi ^2 k^2t}$ 那么$C_k(0)$是什么? 上节课有提到温度有如下关系式: $U(x,t ...
DFT 离散傅里叶变换有定义如下 有离散信号$\underline{f}=\left( \underline{f}[0],\underline{f}[1],…,\underline{f}[N-1] \right)$,它的DFT是离散信号$\underline{\mathcal{F}f ...
这份是本人的学习笔记,课程为网易公开课上的斯坦福大学公开课:傅里叶变换及其应用。 分布的导数(Derivative of a Distribution) 设有分布$T$,其导数为$T'$ $\begin{align*}<T',\varphi>&= \int_ ...
x射线晶体照像术 1) x射线是1895年由伦琴(Roentgen)发现的,其波长为$10^{-8}$厘米左右,常用的测量可见光波长的方法会由于其波长太小而无法测量。 2) 晶体(Cryst ...
这份是本人的学习笔记,课程为网易公开课上的斯坦福大学公开课:傅里叶变换及其应用。 分布傅里叶变换的定义 在傅里叶变换领域中,测试函数$\varphi$选择了速降函数(Schwartz Functions)。与之对应的分布$T$通常被称为缓增分布(Tempered ...
这份是本人的学习笔记,课程为网易公开课上的斯坦福大学公开课:傅里叶变换及其应用。 中心极限定理(Central Limit Theorem) 中心极限定理,简称CLT。大多数概率事件,当有足够多的取样时,都服从高斯分布。(Most probabilities – some kind ...