本系列强化学习内容来源自对David Silver课程的学习 课程链接http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html 之前接触过RL(Reinforcement Learning) 并且在组会学习轮讲里讲过一次Policy ...
入门,来自wiki 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益。其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为。这个方法具有普适性,因此在其他许多领域都有研究,例如博弈论 控制论 运筹学 信息论 模拟优化方法 多主体系统学习 群体智能 统计学以及遗传算法。在运筹学和控制理论研 ...
2015-10-26 12:49 2 19553 推荐指数:
本系列强化学习内容来源自对David Silver课程的学习 课程链接http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html 之前接触过RL(Reinforcement Learning) 并且在组会学习轮讲里讲过一次Policy ...
本文主要介绍强化学习的一些基本概念:包括MDP、Bellman方程等, 并且讲述了如何从 MDP 过渡到 Reinforcement Learning。 1. 强化学习基本概念 这里还是放上David Silver的课程的图,可以很清楚的看到整个交互过程。这就是人与环境交互的一种 ...
一. 开山鼻祖DQN 1. Playing Atari with Deep Reinforcement Learning,V. Mnih et al., NIPS Workshop, ...
1、策略与环境模型 强化学习是继监督学习和无监督学习之后的第三种机器学习方法。强化学习的整个过程如下图所示: 具体的过程可以分解为三个步骤: 1)根据当前的状态 $s_t$ 选择要执行的动作 $ a_t $。 2)根据当前的状态 $s_t $ 和动作 $ a_t ...
强化学习 --- 马尔科夫决策过程(MDP) 1、强化学习介绍 强化学习任务通常使用马尔可夫决策过程(Markov Decision Process,简称MDP)来描述,具体而言:机器处在一个环境中,每个状态为机器对当前环境的感知;机器只能通过动作来影响环境,当机器执行一个动作后 ...
1. 前言 前面的强化学习基础知识介绍了强化学习中的一些基本元素和整体概念。今天讲解强化学习里面最最基础的MDP(马尔可夫决策过程)。 2. MDP定义 MDP是当前强化学习理论推导的基石,通过这套框架,强化学习的交互流程可以很好地以概率论的形式表示出来,解决强化学习问题的关键定理也可以依此 ...
在上一篇文章 强化学习 1 —— 一文读懂马尔科夫决策过程 MDP 介绍了马尔科夫过程,本篇接着来介绍如何使用动态规划方法来求解。 动态规划的关键点有两个: 一是问题的最优解可以由若干小问题的最优解构成,即通过寻找子问题的最优解来得到问题的最优解。 二是可以找到子问题状态之间 ...
作者:YJLAugus 博客: https://www.cnblogs.com/yjlaugus 项目地址:https://github.com/YJLAugus/Reinforcement-Learning-Notes,如果感觉对您有所帮助,烦请点个⭐Star。 MDP背景介绍 ...