阅读目录 1. 决策树的模型 2. 决策树的基本知识 3. ID3、C4.5&CART 4. Random Forest 5. GBDT 6. 参考内容 谈完数据结构中的树(详情见参照之前博文《数据结构中各种树 ...
谈完数据结构中的树 详情见参照之前博文 数据结构中各种树 ,我们来谈一谈机器学习算法中的各种树形算法,包括ID C . CART以及基于集成思想的树模型Random Forest和GBDT。本文对各类树形算法的基本思想进行了简单的介绍,重点谈一谈被称为是算法中的 战斗机 ,机器学习中的 屠龙刀 的GBDT算法。 . 决策树的模型 决策树是一种基本的分类与回归方法,它可以被认为是一种if then ...
2015-08-16 17:28 1 9610 推荐指数:
阅读目录 1. 决策树的模型 2. 决策树的基本知识 3. ID3、C4.5&CART 4. Random Forest 5. GBDT 6. 参考内容 谈完数据结构中的树(详情见参照之前博文《数据结构中各种树 ...
在网上看到一篇对从代码层面理解gbdt比较好的文章,转载记录一下: GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算 ...
GBDT (Gradient Boosting Decision Tree)属于集成学习中的Boosting流派,迭代地训练基学习器 (base learner),当前基学习器依赖于上一轮基学习器的学习结果。 不同于AdaBoost自适应地调整样本的权值分布,GBDT是通过不断地拟合残差 ...
http://www.jianshu.com/p/005a4e6ac775 综述 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算 ...
1.提升树 以决策树为基函数的提升方法称为提升树。决策树可以分为分类树和回归树。提升树模型可以表示为决策树的加法模型。 针对不同的问题的提升术算法的主要区别就是损失函数的不同,对于回归问题我们选用平方损失函数,对于分类问题,我们使用指数 ...
以下内容仅为自己梳理知识,是许多人博客看后和思考的结晶,无故意抄袭,也记不清都看了哪些大神的博客。。。大家看见切勿怪罪! 决策树: 决策树可分为分类树和回归树. ID3,C45是经典的分类模型,可二分类,多分类。它是通过挑选对整体区分度较大的属性,朝着混乱程度减小的方向,迭代 ...
决策树 与SVM类似,决策树在机器学习算法中是一个功能非常全面的算法,它可以执行分类与回归任务,甚至是多输出任务。决策树的算法非常强大,即使是一些复杂的问题,也可以良好地拟合复杂数据集。决策树同时也是随机森林的基础组件,随机森林在当前是最强大的机器学习算法之一。 在这章我们会先讨论如何使用 ...
回归 决策树也可以用于执行回归任务。我们首先用sk-learn的DecisionTreeRegressor类构造一颗回归决策树,并在一个带噪声的二次方数据集上进行训练,指定max_depth=2: 下图是这棵树的结果: 这棵树看起来与之前构造的分类树类似。主要 ...