主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度。而白化就是为了使得每个特征能有同样的方差,降低相邻像素的相关性。 主成分分析PCA PCA算法可以将输入向量转换为一个维数低 ...
主成分分析 PCA 是用来提升无监督特征学习速度的数据降维算法。看过下文大致可以知道,PCA本质是对角化协方差矩阵,目的是让维度之间的相关性最小 降噪 ,保留下来的维度能量最大 去冗余 ,PCA在图像数据的降维上很实用,因为图像数据相邻元素的相关性是很高的。 为了方便解释,我们以二维数据降一维为例 实际应用可能需要把数据从 降到 : 需要注意的是,两个特征值经过了预处理,其均值为零,方差相等,下文 ...
2015-06-22 15:45 0 2022 推荐指数:
主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度。而白化就是为了使得每个特征能有同样的方差,降低相邻像素的相关性。 主成分分析PCA PCA算法可以将输入向量转换为一个维数低 ...
参考链接:http://deeplearning.stanford.edu/wiki/index.php/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90 ...
我!就!是!个!废!柴!……哼…… 前言: PCA与白化, 就是对输入数据进行预处理, 前 ...
主成分分析的原理 主成分分析是将众多的变量转换为少数几个不相关的综合变量,同时不影响原来变量反映的信息,实现数学降维。 如何获取综合变量? 通过指标加权来定义和计算综合指标: \[Y_1 = a_{11} \times X_1+a_{12} \times X_2 + ... +a_ ...
学习视频:【强烈推荐】清风:数学建模算法、编程和写作培训的视频课程以及Matlab 老师讲得很详细,很受用!!! 定义 主成分分析(PrincipalComponentAnalysis,PCA), 主成分分析是一种降维算法,它能将多个指标转换为少数几 个主成分,这些主成分是原始变量的线性组合 ...
主成分分析(Principal Component Analysis, PCA )是一种利用线性映射来进行数据降维的方法,并去除数据的相关性; 且最大限度保持原始数据的方差信息 线性映射,去相关性,方差保持 线性映射 \[F = \sum_{i=1}^{p}u_iX_i = u^{T ...
Principal Components AnalysisCall: principal(r = USJudgeRatings[, -1], nfactors = 1)S ...
个)。可起到数据压缩的作用(因而也就存在数据丢失)。 2.PCA,即主成分分析法,属于降维的一种方法 ...