HOG+SVM流程 1.提取HOG特征 灰度化 + Gamma变换(进行根号求解) 计算梯度map(计算梯度) 图像划分成小的cell,统计每个cell梯度直方图 多个cell组成一个block, 特征归一化 多个block串接,并归一化 2.训练SVM分类器 ...
最近听了关于HOG与SVM的报告,比较深刻的学习了算法原理与实现方式。这里根据一些资料作下总结,方便日后拾起: A.方向梯度直方图 HOG,Histogram of Gradient 将图像依次划分为检测窗口 window 块 block 胞元 cell 个层次 大体流程: 逐像素计算方向梯度 对cell中的像素根据梯度划分区间,给出统计直方图 对于每个block中重叠的cell进行对比度归一化 ...
2015-05-27 17:35 0 4146 推荐指数:
HOG+SVM流程 1.提取HOG特征 灰度化 + Gamma变换(进行根号求解) 计算梯度map(计算梯度) 图像划分成小的cell,统计每个cell梯度直方图 多个cell组成一个block, 特征归一化 多个block串接,并归一化 2.训练SVM分类器 ...
HOG SVM 车辆检测 近期需要对卡口车辆的车脸进行检测,首先选用一个常规的检测方法即是hog特征与SVM,Hog特征是由dalal在2005年提出的用于道路中行人检测的方法,并且取的了不错的识别效果。在人脸检测方面目前主流的方法,先不考虑复杂的深度学习,大多采用Haar和Adaboost ...
本文主要介绍下opencv中怎样使用hog算法,因为在opencv中已经集成了hog这个类。其实使用起来是很简单的,从后面的代码就可以看出来。本文参考的资料为opencv自带的sample。 关于opencv中hog的源码分析,可以参考本人的另一篇博客:opencv源码解析 ...
正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体。 负样本是从不包含人体的图片中随机裁取的,大小同样是64*128(从完全不包含人体的图片中随机剪裁出64*128大小的用于人体检测的负样本)。 SVM使用 ...
一、HOG算法 HOG的一个详细的介绍:https://www.cnblogs.com/wyuzl/p/6792216.html fast-hog源码实现流程整理xmind HOG的核心思想是通过检测局部物体的梯度和边缘方向信息得到被检测物体的局部特征,HOG能较好的捕捉到局部形状信息 ...
利用HOG+SVM实现行人检测 很久以前做的行人检测,现在稍加温习,上传记录一下。 首先解析视频,提取视频的每一帧形成图片存到磁盘。代码如下 对于图片的行人检测应用了梯度方向直方图和支持向量机。代码如下 这段代码可以实现对行人的标记。 在这里应用了非极大值抑制方法(NMS),处理 ...
这几个月一直在忙着做大论文,一个基于 SVM 的新的目标检测算法。为了做性能对比,我必须训练一个经典的 Dalal05 提出的行人检测器,我原以为这个任务很简单,但是我错了。 为了训练出一个性能达标的行人检测器,我花了半个月的时间,中间遇到各种 BUG 我就不提了,下面只说正确的步骤 ...
本文主要介绍下opencv中怎样使用hog算法,因为在opencv中已经集成了hog这个类。其实使用起来是很简单的,从后面的代码就可以看出来。本文参考的资料为opencv自带的sample。 关于opencv中hog的源码分析,可以参考本人的另一篇博客:opencv源码解析之(6):hog ...