原文:《机器学习》学习笔记(一):线性回归、逻辑回归

本笔记主要记录学习 机器学习 的总结体会。如有理解不到位的地方,欢迎大家指出,我会努力改正。 在学习 机器学习 时,我主要是通过Andrew Ng教授在mooc上提供的 Machine Learning 课程,不得不说Andrew Ng老师在讲授这门课程时,真的很用心,特别是编程练习,这门课真的很nice,在此谢谢Andrew Ng老师的付出。同时也谢过告知这个平台的小伙伴。本文在写的过程中,多 ...

2015-03-04 19:54 0 7547 推荐指数:

查看详情

机器学习 - 线性回归逻辑回归(理论部分)

什么是线性回归? 根据样本数据的分布特点,通过线性关系模拟数据分布趋势,从而进行预测。对于下图来说,样本点的连线大致接近于一条直线,所以就可以将函数模拟成线性方程。 设 f(x) = wx + b,所以只要求出w 和 b,就可以得到x与y的关系,从而能够根据x预测出对应的y。 要求 w 和 b ...

Mon Aug 02 20:23:00 CST 2021 0 310
机器学习基础---逻辑回归(假设函数与线性回归不同)

一:分类 (一)分类基础 在分类问题中,你要预测的变量y是离散的值,我们将学习一种叫做逻辑回归 (Logistic Regression) 的算法,这是目前最流行使用最广泛的一种学习算法。 在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误)。分类问题的例子有:判断一封 ...

Fri May 01 04:53:00 CST 2020 0 1366
机器学习总结(六)线性回归逻辑回归

线性回归(Linear Regression) 是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合(自变量都是一次方)。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归线性回归 ...

Wed Oct 24 04:50:00 CST 2018 0 723
机器学习 - 线性回归逻辑回归(实践部分)

之前对线性回归逻辑回归的理论部分做了较为详细的论述,下面通过一些例子再来巩固一下之前所学的内容。 需要说明的是,虽然我们在线性回归中都是直接通过公式推导求出w和b的精确值,但在实际运用中基本上都会采用梯度下降法作为首选,因为用代码表示公式会比较繁琐,而梯度下降法只需要不断对参数更新公式进行迭代 ...

Wed Aug 04 05:25:00 CST 2021 0 181
机器学习线性回归

回归是统计学中最有力的工具之一。机器学习监督学习算法分为分类算法和回归算法两种,其实就是根据类别标签分布类型为离散型、连续性而定义的。回归算法用于连续型分布预测,针对的是数值型的样本,使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,因为这样可以预测连续型数据而不仅仅是离散的类别 ...

Fri Dec 27 03:19:00 CST 2019 0 1323
机器学习线性回归

输出是一个连续的数值。 模型表示 对于一个目标值,它可能受到多个特征的加权影响。例如宝可梦精灵的进化的 cp 值,它不仅受到进化前的 cp 值的影响,还可能与宝可梦的 hp 值、类型、高度以及重量相关。因此,对于宝可梦进化后的 cp 值,我们可以用如下线性公式来表示: \[y=b+ ...

Wed Jun 05 22:25:00 CST 2019 0 825
机器学习二(线性回归和Logistic回归

前言 由于本部分内容讲解资源较多,本文不做过多叙述,重点放在实际问题的应用上。 一、线性回归 线性回归中的线性指的是对于参数的线性的,对于样本的特征不一定是线性的。 线性模型(矩阵形式):y=XA+e 其中:A为参数向量,y为向量,X为矩阵,e为噪声向量。 对于线性模型 ...

Thu Mar 15 04:15:00 CST 2018 0 881
机器学习(周志华)》笔记--线性模型(3)--逻辑回归思想、概率计算、sigmoid 函数、逻辑回归的损失函数计算

四、逻辑回归   逻辑回归是属于机器学习里面的监督学习,它是以回归的思想来解决分类问题的一种非常经典的二分类分类器。由于其训练后的参数有较强的可解释性,在诸多领域中,逻辑回归通常用作baseline模型,以方便后期更好的挖掘业务相关信息或提升模型性能。 1、逻辑回归思想   当一看到“回归 ...

Sat Feb 01 18:40:00 CST 2020 0 751
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM