原文:聚类算法——ISODATA算法

. 与K 均值算法的比较 K 均值算法通常适合于分类数目已知的聚类,而ISODATA算法则更加灵活 从算法角度看, ISODATA算法与K 均值算法相似,聚类中心都是通过样本均值的迭代运算来决定的 ISODATA算法加入了一些试探步骤,并且可以结合成人机交互的结构,使其能利用中间结果所取得的经验更好地进行分类。 . ISODATA算法基本步骤和思路 选择某些初始值。可选不同的参数指标,也可在迭代 ...

2014-11-16 12:41 1 12102 推荐指数:

查看详情

聚类算法ISODATA算法

本文转载自http://www.cnblogs.com/huadongw/p/4101422.html 聚类算法ISODATA算法 1. 与K-均值算法的比较 –K-均值算法通常适合于分类数目已知的聚类,而ISODATA算法则更加灵活; –从算法 ...

Mon Apr 11 22:27:00 CST 2016 0 1834
聚类算法ISODATA算法

1. 与K-均值算法的比较 –K-均值算法通常适合于分类数目已知的聚类,而ISODATA算法则更加灵活; –从算法角度看, ISODATA算法与K-均值算法相似,聚类中心都是通过样本均值的迭代运算来决定的; –ISODATA算法加入了一些试探步骤,并且可以结合 ...

Sun Nov 16 22:44:00 CST 2014 0 17144
ISODATA聚类算法的matlab程序

ISODATA聚类算法的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 参考:Kmeans及ISODATA算法的matlab实现 算法简介:聚类算法ISODATA算法 数据见:MATLAB实例:PCA降维中的iris数据集 ...

Fri Oct 11 00:10:00 CST 2019 6 1187
K-means聚类算法的三种改进(K-means++,ISODATA,Kernel K-means)介绍与对比

一、概述 在本篇文章中将对四种聚类算法(K-means,K-means++,ISODATA和Kernel K-means)进行详细介绍,并利用数据集来真实地反映这四种算法之间的区别。 首先需要明确的是上述四种算法都属于"硬聚类算法,即数据集中每一个样本都是被100 ...

Wed Jan 11 11:00:00 CST 2017 12 70959
聚类算法

聚类算法有很多,常见的有几大类:划分聚类、层次聚类、基于密度的聚类。本篇内容包括k-means、层次聚类、DBSCAN 等聚类方法。 k-means 方法 初始k个聚类中心; 计算每个数据点到聚类中心的距离,重新分配每个数据点所属聚类; 计算新的聚簇集合的平均值作为新 ...

Thu Apr 13 06:14:00 CST 2017 0 2769
聚类算法

一、聚类算法简介 聚类是无监督学习的典型算法,不需要标记结果。试图探索和发现一定的模式,用于发现共同的群体,按照内在相似性将数据划分为多个类别使得内内相似性大,内间相似性小。有时候作为监督学习中稀疏特征的预处理(类似于降维,变成K类后,假设有6类,则每一行都可以表示为类似于000100 ...

Thu Sep 15 07:33:00 CST 2016 2 25470
聚类算法

Infi-chu: http://www.cnblogs.com/Infi-chu/ 一、简介 1.聚类算法的应用领域 用户画像,广告推荐,Data Segmentation,搜索引擎的流量推荐,恶意流量识别 基于位置信息的商业推送,新闻聚类,筛选排序 图像分割,降维,识别 ...

Tue Sep 10 19:20:00 CST 2019 0 674
聚类算法

聚类算法 李鑫 2014210820 电子系 1、kmeans算法 1.1Kmeans算法理论基础 K均值算法能够使聚类域中所有样品到聚类中心距离平方和最小。其原理为:先取k个初始聚类中心,计算每个样品到这k个中心的距离,找出最小距离,把样品归入最近的聚类中心,修改中心点 ...

Fri Mar 11 03:35:00 CST 2016 0 2315
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM