原文:BP神经网络模型及算法推导

一,什么是BP BP Back Propagation 网络是 年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入 输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经 ...

2014-10-30 14:41 0 4784 推荐指数:

查看详情

BP神经网络模型

1. BP神经网络模型(Backpropagation Neural Networks) 采用非线性激活函数,Sigmoid函数。 三个层次:输入层(Input Layer),隐藏层(Hidden Layer) 和输出层(Output layer),就好比神经网络的各个神经元具有 ...

Sun Jul 05 23:38:00 CST 2020 0 1469
BP神经网络算法推导

前言:自己动手推导了一下经典的前向反馈神经网络算法公式,记录一下。由于暂时没有数据可以用作测试,程序没有实现并验证。以后找到比较好的数据,再进行实现。 一:算法推导   神经网络通过模拟人的神经元活动,来构造分类器。它的基本组成单元称为”神经元”,离线情况下如果输入大于某值时,设定神经元处于 ...

Thu Dec 13 05:50:00 CST 2012 1 22026
建模算法(六)——神经网络模型

(一)神经网络简介 主要是利用计算机的计算能力,对大量的样本进行拟合,最终得到一个我们想要的结果,结果通过0-1编码,这样就OK啦 (二)人工神经网络模型 一、基本单元的三个基本要素 1、一组连接(输入),上面含有连接强度(权值)。 2、一个求和单元 3、一个非线性 ...

Wed Feb 04 00:47:00 CST 2015 0 2836
神经网络 误差逆传播算法推导 BP算法

  误差逆传播算法是迄今最成功的神经网络学习算法,现实任务中使用神经网络时,大多使用BP算法进行训练。   给定训练集\(D={(x_1,y_1),(x_2,y_2),......(x_m,y_m)},x_i \in R^d,y_i \in R^l\),即输入示例由\(d\)个属性描述,输出\(l ...

Thu Nov 30 06:04:00 CST 2017 0 2486
多层神经网络BP算法 原理及推导

使用什么样的感知器来作为神经网络节点呢?在上一篇文章我们介绍过感知器算法,但是直接使用的话会存在以下问题 ...

Mon Jul 13 02:00:00 CST 2015 2 88312
多层神经网络BP算法 原理及推导

多层神经网络BP算法 原理及推导 转载;https://www.cnblogs.com/liuwu265/p/4696388.html   首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络 ...

Tue Apr 09 01:12:00 CST 2019 0 3605
神经网络——反向传播BP算法公式推导

  在神经网络中,当我们的网络层数越来越多时,网络的参数也越来越多,如何对网络进行训练呢?我们需要一种强大的算法,无论网络多复杂,都能够有效的进行训练。在众多的训练算法中,其中最杰出的代表就是BP算法,它是至今最成功的神经网络学习算法。在实际任务中,大部分都是使用的BP算法来进行网络训练 ...

Mon Apr 22 06:34:00 CST 2019 0 826
BP神经网络算法推导及代码实现笔记zz

一. 前言: 作为AI入门小白,参考了一些文章,想记点笔记加深印象,发出来是给有需求的童鞋学习共勉,大神轻拍! 【毒鸡汤】:算法这东西,读完之后的状态多半是 --> “我是谁,我在哪?” 没事的,吭哧吭哧学总能学会,毕竟还有千千万万个算法等着你。 本文 ...

Fri Apr 12 21:53:00 CST 2019 0 1362
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM