1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量(变量)——房屋面积x。我们希望使用这个特征量来预测房子的价格。我们的假设在下图中用蓝线划出 ...
. Multiple features 多维特征 在机器学习之单变量线性回归 Linear Regression with One Variable 我们提到过的线性回归中,我们只有一个单一特征量 变量 房屋面积x。我们希望使用这个特征量来预测房子的价格。我们的假设在下图中用蓝线划出: 不妨思考一下,如果我们不仅仅知道房屋面积 作为预测房屋价格的特征量 变量 ,我们还知道卧室的数量 楼层的数量以 ...
2014-10-27 22:04 1 7836 推荐指数:
1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量(变量)——房屋面积x。我们希望使用这个特征量来预测房子的价格。我们的假设在下图中用蓝线划出 ...
Gradient Descent for Multiple Variables 【1】多变量线性模型 代价函数 Answer:AB 【2】Feature Scaling 特征缩放 Answer:D 【3】学习速率 α Answer: B ...
本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,...,xn) 表示为: 引入 x0=1,则公式转化为: 1、加载训练 ...
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression ...
一、不包含分类型变量 from numpy import genfromtxtimport numpy as npfrom sklearn import datasets,linear_modelpath=r'D:\daacheng\Python\PythonCode ...
1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始。这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住房价格。在这里,我要根据不同房屋尺寸所售出的价格,画出我的数据集: 我们来看这个数 ...
1. The Problem of Overfitting 1 还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图。 如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型。我们看看这些数据,很明显,随着房子面积增大,住房价格的变化 ...
1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始。这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住房价格。在这里,我要根据不同房屋尺寸所售出的价格,画出我的数据集: 我们来看这个数 ...