一、引言 分类决策树是一种基于特征对实例进行划分的树形结构。如下图: 图中包括有内部节点和叶子节点,叶子节点表示的是分类结果,而内部节点表示基于特征对实例的划分。如根节点,是根据特征x1是否大于a1进行划分,划分成两个内部节点,但是此时的两个内部节点各自所包含的实例中依然有不同类 ...
决策树有着非常广泛的应用,可以用于分类和回归问题。以下针对分类问题对决策树进行分析。 分类情况下,可以处理离散 if then 的特征空间,也可以是连续 阈值化的if than 的特征空间。 决策树由结点和边构成,其中结点分内结点 属性,特征 和外结点 类别 。边上代表着判别的规则,即if then规则 Splitting datasets one feature at a time. 思想,决策 ...
2014-09-25 18:13 0 2898 推荐指数:
一、引言 分类决策树是一种基于特征对实例进行划分的树形结构。如下图: 图中包括有内部节点和叶子节点,叶子节点表示的是分类结果,而内部节点表示基于特征对实例的划分。如根节点,是根据特征x1是否大于a1进行划分,划分成两个内部节点,但是此时的两个内部节点各自所包含的实例中依然有不同类 ...
决策树是机器学习的常见算法,分为分类树和回归树。当对一个样本的分类进行预测时使用分类树,当对样本的某一个值进行预测时使用回归树。本文是有关决策树的第一部分,主要介绍分类树的几种构建方法,以及如何使用分类树测试分类。 目录如下: 1、分类树的基本概念 2、采用数据集说明 3、划分数据集的几种 ...
1、决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归。不过对于一些特殊的逻辑分类会有困难。典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题。 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题。因此如何构建一棵好的决策树是研究的重点 ...
一、决策树的介绍 决策树是一种常见的分类模型,在金融分控、医疗辅助诊断等诸多行业具有较为广泛的应用。决策树的核心思想是基于树结构对数据进行划分,这种思想是人类处理问题时的本能方法。例如在婚恋市场中,女方通常会先看男方是否有房产,如果有房产再看是否有车产,如果有车产再看是否有稳定工作……最后得出 ...
一、决策树的原理 决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法 。 二、决策树的现实案例 相亲 ...
决策树是一个函数,以属性值向量作为输入,返回一个“决策”。 如上图,我们输入一系列属性值(天气状况,湿度,有无风)后会得到一个要不要出去玩的一个决策。 从样例构建决策树 对于原始样例集,我们选取一个最好的属性将其分裂,这样我们会产生多个样例子集,同时我们会把该属性从属性集去掉,并且继续 ...
一.简介 决策树学习是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树。 二.决策树的表示法 决策树通过把实例从艮节点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每一个结点指定了对实例的某个属性的测试,并且该结点的每一个后继分支对应于该属性 ...
决策树(Decision Tree DT) 机器学习是从给定的训练数据集学的一个模型用于对新示例进行分类,对于决策树而言,我们希望决策树的分支节点所包含的样本尽可能属于同一类别,即结点的“纯度”越高越好,这样可以避免多次无用的分类。有多种方法来衡量纯度,此处介绍信息熵和基尼系数两种 ...