逻辑回归常见问题:https://www.cnblogs.com/ModifyRong/p/7739955.html 推导在笔记上,现在摘取部分要点如下: (0) LR回归是在线性回归模型的基础上,使用sigmoid">sigmoid函数,将线性模型 wTx">wTx的结果压缩到[0,1 ...
本系列文章用于汇集知识点,查漏补缺,面试找工作之用。数学公式较多,解释较少。 .假设 .sigmoid函数: .假设的含义: .性质: .找一个凸损失函数 .可由最大似然估计推导出 单个样本正确预测的概率为 只是 两个式子合并在一起的表示方法 整个样本空间的概率分布为 取对数展开得, 作为损失函数,并且最小化它,则应改写为 式。 .求解方法 最原始的方法,梯度下降法 先求导,并带入sigmoid表 ...
2014-08-17 20:40 0 20613 推荐指数:
逻辑回归常见问题:https://www.cnblogs.com/ModifyRong/p/7739955.html 推导在笔记上,现在摘取部分要点如下: (0) LR回归是在线性回归模型的基础上,使用sigmoid">sigmoid函数,将线性模型 wTx">wTx的结果压缩到[0,1 ...
逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1。 MLLib的逻辑回归类有两个:LogisticRegressionWithSGD和LogisticRegressionWithLBFGS ...
理论上讲线性回归模型既可以用于回归,也可以用于分类。解决回归问题,可以用于连续目标值的预测。但是针对分类问题,该方法则有点不适应,因为线性回归的输出值是不确定范围的,无法很好的一一对应到我们的若干分类中。即便是一个二分类,线性回归+阈值的方式,已经很难完成一个鲁棒性很好的分类器了。为了更好的实现 ...
知道某个算法,和运用一个算法是两码事儿。 当你训练出数据后,发觉模型有太大误差,怎么办? 1)获取更多的数据。也许有用吧。 2)减少特征维度。你可以自己手动选择,也可以利用诸如PCA等数学方法。 3)获取更多的特征。当然这个方法很耗时,而且不一定有用。 4)添加多项式特征。你在抓 ...
一、概述 1.1、概念 是一种名为“回归”的线性分类器,是由线性回归变化而来的,一种广泛使用于分类问题中的广义回归算法。 1.2、按预测标签的数据类型分 连续型变量:通过线性回归方程z,线性回归使用输入的特征矩阵 ...
逻辑回归--简介 逻辑回归(Logistic Regression)就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。 Logistic回归虽然名字里带“回归”,但是它实际上 ...
一、逻辑回归简介 logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。 logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相 ...
【机器学习】算法原理详细推导与实现(二):逻辑回归 在上一篇算法中,线性回归实际上是 连续型 的结果,即 \(y\in R\) ,而逻辑回归的 \(y\) 是离散型,只能取两个值 \(y\in \{0,1\}\),这可以用来处理一些分类的问题。 logistic函数 我们可能会遇到一些分类 ...