神经网络与机器学习 第5章 随机梯度下降法-BP的起源 神经网络的训练有很多方法,以数值优化为基础的随机梯度学习算法能够处理大规模的数据集合,它也是后面多层神经网络后向传播算法的基础。 随机梯度下降是以均方误差为目标函数的近似最速下降算法,该算法被广泛用于自适应信号处理领域 ...
这几天围绕论文A Neural Probability Language Model 看了一些周边资料,如神经网络 梯度下降算法,然后顺便又延伸温习了一下线性代数 概率论以及求导。总的来说,学到不少知识。下面是一些笔记概要。 一 神经网络 神经网络我之前听过无数次,但是没有正儿八经研究过。形象一点来说,神经网络就是人们模仿生物神经元去搭建的一个系统。人们创建它也是为了能解决一些其他方法难以解决的 ...
2014-07-22 12:38 2 8009 推荐指数:
神经网络与机器学习 第5章 随机梯度下降法-BP的起源 神经网络的训练有很多方法,以数值优化为基础的随机梯度学习算法能够处理大规模的数据集合,它也是后面多层神经网络后向传播算法的基础。 随机梯度下降是以均方误差为目标函数的近似最速下降算法,该算法被广泛用于自适应信号处理领域 ...
BP神经网络是深度学习的重要基础,它是深度学习的重要前行算法之一,因此理解BP神经网络原理以及实现技巧非常有必要。接下来,我们对原理和实现展开讨论。 1.原理 有空再慢慢补上,请先参考老外一篇不错的文章:A Step by Step Backpropagation Example ...
1.简介(只是简单介绍下理论内容帮助理解下面的代码,如果自己写代码实现此理论不够) 1) BP神经网络是一种多层网络算法,其核心是反向传播误差,即: 使用梯度下降法(或其他算法),通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。 BP神经网络模型拓扑 ...
一、BP神经网络的概念 BP神经网络是一种多层的前馈神经网络,其基本的特点是:信号是前向传播的,而误差是反向传播的。详细来说。对于例如以下的仅仅含一个隐层的神经网络模型: watermark/2/text ...
BP神经网络梯度下降算法 目录(?)[+] 菜鸟初学人智相关问题,智商低,艰苦学习中,转文只为保存,其中加上了一些个人注释,便于更简单的理解~新手也可以看,共勉。 转自博客园@ 编程De: http ...
https://blog.csdn.net/weixin_38206214/article/details/81143894 在深度学习的路上,从头开始了解一下各项技术。本人是DL小白,连续记录我自己看的一些东西,大家可以互相交流。本文参考:本文参考吴恩达老师的Coursera深度学习课程,很棒 ...
###神经网络基础概念 人工神经网络又叫神经网络,是借鉴了生物神经网络的工作原理形成的一种数学模型。神经网络是机器学习诸多算法中的一种,它既可以用来做有监督的任务,如分类、视觉识别等,也可以用作无监督的任务。同时它能够处理复杂的非线性问题,它的基本结构是神经元,如下图所示: 其中,x1 ...
1. 背景: 1.1 以人脑中的神经网络为启发,历史上出现过很多不同版本 1.2 最著名的算法是1980年的 backpropagation 2. 多层向前神经网络(Multilayer Feed-Forward Neural Network ...