一、前言 这是本人写的第一篇博客,是学习李航老师的《统计学习方法》书以及斯坦福机器学习课Andrew Ng的EM算法课后,对EM算法学习的介绍性笔记,如有写得不恰当或错误的地方,请指出,并多多包涵,谢谢。另外本人数学功底不是很好,有些数学公式我会说明的仔细点的,如果数学基础好,可直接 ...
文章目录 . 前言 .基础数学知识 . .凸函数 . .Jensen不等式 .EM算法所解决问题的例子 .EM算法 . .模型说明 . .EM算法推导 . .EM算法收敛性证明 . . EM算法E步说明 .小结 .主要参考文献 . 前言 这是本人写的第一篇博客 年 月 日发在cnblogs上,现在迁移过来 ,是学习李航老师的 统计学习方法 书以及斯坦福机器学习课Andrew Ng的EM算法课后, ...
2014-04-11 20:40 8 3361 推荐指数:
一、前言 这是本人写的第一篇博客,是学习李航老师的《统计学习方法》书以及斯坦福机器学习课Andrew Ng的EM算法课后,对EM算法学习的介绍性笔记,如有写得不恰当或错误的地方,请指出,并多多包涵,谢谢。另外本人数学功底不是很好,有些数学公式我会说明的仔细点的,如果数学基础好,可直接 ...
EM算法简述 EM算法是一种迭代算法,主要用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步完成: E步,求期望 M步,求极大。 EM算法的引入 如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法或贝叶斯估计法估计 ...
1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成 ...
最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。 在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计 ...
原创博客,转载请注明出处 Leavingseason http://www.cnblogs.com/sylvanas2012/p/5053798.html EM框架是一种求解最大似然概率估计的方法。往往用在存在隐藏变量的问题上。我这里特意用"框架"来称呼它,是因为EM算法不像一些常见 ...
转自http://blog.csdn.net/zouxy09/article/details/8537620/ 机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做 ...
本文试图用最简单的例子、最浅显的方式说明EM(Expectation Maximization)算法的应用场景和使用方法,而略去公式的推导和收敛性的证明。 以下内容翻译自《Data-Intensive Text Processing with MapReduce》。 Maximum ...
算法,在此梳理一下。全文主要包括: 1)EM算法背景介绍; 2)EM算法原理推导; ...