原文:无监督学习一些算法的简要概括(一)-稀疏自编码

无监督学习 unsurpervised learning 是深度学习的基础,也是大数据时代科学家们用来处理数据挖掘的主要工具。个人理解的话就是数据太多,而人们不可能给每个数据样本加标签吧,所以才有了无监督学习。当然用的最多的是用无监督学习算法训练参数,然后用一部分加了标签的数据测试。这种方法叫半监督学习 semi unsurpervised 。最近看的几个深度学习算法是:稀疏自编码 sparse ...

2014-03-17 13:18 0 9183 推荐指数:

查看详情

监督学习算法

本文首发自公众号:RAIS,点击直接关注。 前言 本系列文章为 《Deep Learning》 读书笔记,可以参看原书一起阅读,效果更佳。 监督学习算法 就是监督的一种学习方法,太抽象,有一种定义(这种定义其实不够准确,监督监督之间界限模糊)是说如果训练集有标签 ...

Tue Apr 07 22:04:00 CST 2020 0 2108
监督学习

等应用  机器学习的分类     监督学习 (Supervised Learning)       ...

Fri May 19 17:41:00 CST 2017 1 15963
监督学习监督学习区别

机器学习分为:监督学习监督学习,半监督学习(也可以用hinton所说的强化学习)等。 监督监督区别: 1. 有监督学习方法必须要有训练集与测试样本。在训练集中找规律,而对测试样本使用这种规律。而非监督学习没有训练集,只有一组数据,在该组数据集内寻找规律。 2. ...

Wed May 15 00:33:00 CST 2019 0 2001
监督学习监督学习

    机器学习的常用方法,主要分为有监督学习(supervised learning)和监督学习(unsupervised learning)。监督学习,就是人们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型 ...

Sun Nov 13 22:52:00 CST 2016 0 1756
什么是有监督学习监督学习

  监督学习,就是人们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优则表示在某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力。在人 ...

Fri Apr 12 02:17:00 CST 2019 0 826
监督学习监督学习的区别

监督学习监督学习两者的区别: 1.有标签就是有监督学习,没有标签就是监督学习,说的详细一点,有监督学习的目的是在训练集中找规律,然后对测试数据运用这种规律,而无监督学习没有训练集,只有一组数据,在该组数据集内寻找规律。 2. 监督学习方法在寻找数据集中的规律性,这种规律性并不一定 ...

Thu Apr 08 05:32:00 CST 2021 0 1894
什么是有监督学习监督学习

监督学习,就是人们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优则表示在某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力 ...

Tue Aug 02 06:31:00 CST 2016 0 4474
<机器学习>监督学习算法总结

  本文仅对常见的监督学习算法进行了简单讲述,其他的如自动编码器,受限玻尔兹曼机用于监督学习,神经网络用于监督学习等未包括。同时虽然整体上分为了聚类和降维两大类,但实际上这两类并非完全正交,很多地方可以相互转化,还有一些变种的算法既有聚类功能又有降维功能,一些新出现的和尚在开发创造中的 ...

Fri Oct 04 08:14:00 CST 2019 5 5276
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM