本章思路: 根据之前的总结,如果M很大,那么无论假设泛化能力差的概率多小,都无法忽略,所以问题转化为证明M不大,然后上章将其转化为证明成长函数:mh(N)为多项式级别。直接证明似乎很困难,本章继续利 ...
这节的主题感觉和training,testing关系不是很大,其根本线索在于铺垫并求解一个问题: 为什么算法PLA可以正确的work 因为前面的知识告诉我们,只有当假设的个数有限的时候,我们才能比较确认我们得到坏的数据集的概率比较低,也就是说算法得出的假设和最佳假设在全局表现相同 错误率相等 ,可是PLA的假设是平面上的直线,不是无数个么 为什么可以正常泛化 为解释这个问题,有了这节以及下面几节 ...
2014-03-12 12:29 0 2465 推荐指数:
本章思路: 根据之前的总结,如果M很大,那么无论假设泛化能力差的概率多小,都无法忽略,所以问题转化为证明M不大,然后上章将其转化为证明成长函数:mh(N)为多项式级别。直接证明似乎很困难,本章继续利 ...
本章的思路在于揭示VC Dimension的意义,简单来说就是假设的自由度,或者假设包含的feature vector的个数(一般情况下),同时进一步说明了Dvc和,Eout,Ein以及Model ...
总体思路: 各种类型的机器学习分类 按照输出空间类型分Y 按照数据标记类型分yn 按照不同目标函数类型分f 按照不同的输入空间类型分X 按照输出空间类型Y,可以分为二元分类,多元分类,回归分析以及结构化学习 ...
提纲: 机器学习为什么可能? 引入计算橙球概率问题 通过用Hoeffding's inequality解决上面的问题,并得出PAC的概念,证明采样数据学习到的h的错误率可以和全局一致是PAC的 将得到的理论应用到机器学习,证明实际机器 ...
最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正。 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program is said to learn from experience E ...
神经网络的学习(Neural Networks: Learning) 9.1 代价函数 Cost Function 参考视频: 9 - 1 - Cost Function (7 min).mkv 假设神经网络的训练样本有𝑚个,每个包含一组输入 𝑥 和一组输出信号 𝑦,𝐿 表示 ...
目录 1.1 欢迎1.2 机器学习是什么 1.2.1 机器学习定义 1.2.2 机器学习算法 - Supervised learning 监督学习 - Unsupervised learning 无监督学习 - Reinforcement learning 强化学习 ...
Lecture2 Linear regression with one variable 单变量线性回归 2.1 模型表示 Model Representation 2.1.1 线性回 ...