变换是线性代数主要解决的问题。就是你看一个事物是一个样子,别人看实物其实是另外一个样子,但是其实这个事 ...
这篇最早是在知乎上写的一个答案,在这展开总结总结吧。从线性代数的角度,试着直观地理解傅里叶变换和相关的公式。在理解傅里叶变换前,首先回顾一个线性代数里的简单概念: 正交基 Orthogonal Basis 考虑如下的向量表达式: left begin matrix end matrix right cdot left begin matrix end matrix right left right ...
2014-03-11 13:31 17 5016 推荐指数:
变换是线性代数主要解决的问题。就是你看一个事物是一个样子,别人看实物其实是另外一个样子,但是其实这个事 ...
1. 恒等变换 现在让我们来找到这个特殊无聊的变换 \(T(\boldsymbol v)=\boldsymbol v\) 对应的矩阵。这个恒等变换什么都没有做,对应的矩阵是恒等矩阵,如果输出的基和输入的基一样的话。 如果 \(T(\boldsymbol v_j)=\boldsymbol ...
矩阵的初等变换是线性代数中的基本运算,初等变换包括三种初等行变换与三种初等列变换。分别为: 对换变换,即i行与j行进行交换,记作ri <->rj; 数乘变换,非零常数k乘以矩阵的第i行,记作kri; 倍加交换,矩阵第i行的k倍加到第j行上,记作rj + kri ...
本人博客:https://xiaoxiablogs.top 矩阵的初等变换 矩阵的初等变换分为初等行变换和初等列变换 初等变换矩阵与矩阵之间用箭头连接,不能用等号 初等行变换 交换两行 用k(k≠0)乘以某一行 某一行的1倍加到某一行上去 定理1 任何矩阵都可 ...
本人博客:https://xiaoxiablogs.top 矩阵的初等变换 矩阵的初等变换分为初等行变换和初等列变换 初等变换矩阵与矩阵之间用箭头连接,不能用等号 初等行变换 交换两行 用k(k≠0)乘以某一行 某一行的1倍加到某一行上去 定理1 任何矩阵都可 ...
线性变换定义 直观地说,如果一个变换具有以下两条性质,我们就称它是线性的: 一是直线在变换后仍然保持为直线,不能有所弯曲(变换后对角线也必须是直线,也就是变换后的x轴和y轴保持平行且等分) 二是原点必须保持固定 总的来说,你应该吧线性变换看作是 保持网格平行且等距分布,并保持 ...
Unfortunately, no one can be told what the Matrix is. You have to see it for yourself ---Morpheus 正如墨菲斯所说:没人能够清楚地告诉你矩阵是什么,你必须自己亲自看看。 3.1 线性变换 ...
1. 线性变换的概念 当一个矩阵 \(A\) 乘以一个向量 \(\boldsymbol v\) 时,它将 \(\boldsymbol v\) 变换到另一个向量 \(A\boldsymbol v\)。进来的是 \(\boldsymbol v\),出去的是 \(T( \boldsymbol v ...