本章思路: 根据之前的总结,如果M很大,那么无论假设泛化能力差的概率多小,都无法忽略,所以问题转化为证明M不大,然后上章将其转化为证明成长函数:mh(N)为多项式级别。直接证明似乎很困难,本章继续利 ...
提纲: 机器学习为什么可能 引入计算橙球概率问题 通过用Hoeffding s inequality解决上面的问题,并得出PAC的概念,证明采样数据学习到的h的错误率可以和全局一致是PAC的 将得到的理论应用到机器学习,证明实际机器是可以学习 机器学习的大多数情况下是让机器通过现有的训练集 D 的学习以获得预测未知数据的能力,即选择一个最佳的h做为学习结果,那么这种预测是可能的么 为什么在采样数据 ...
2013-12-28 21:27 2 9183 推荐指数:
本章思路: 根据之前的总结,如果M很大,那么无论假设泛化能力差的概率多小,都无法忽略,所以问题转化为证明M不大,然后上章将其转化为证明成长函数:mh(N)为多项式级别。直接证明似乎很困难,本章继续利 ...
本章的思路在于揭示VC Dimension的意义,简单来说就是假设的自由度,或者假设包含的feature vector的个数(一般情况下),同时进一步说明了Dvc和,Eout,Ein以及Model ...
这节的主题感觉和training,testing关系不是很大,其根本线索在于铺垫并求解一个问题: 为什么算法PLA可以正确的work?因为前面的知识告诉我们,只有当假设的个 ...
总体思路: 各种类型的机器学习分类 按照输出空间类型分Y 按照数据标记类型分yn 按照不同目标函数类型分f 按照不同的输入空间类型分X 按照输出空间类型Y,可以分为二元分类,多元分类,回归分析以及结构化学习 ...
最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正。 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program is said to learn from experience E ...
在上周我写了一篇“基于机器学习的银行电话营销客户购买可能性预测分析”,那是作为对客户购买可能性预测分析的第一次验证案例的尝试。今天是基于机器学习的客户购买可能性预测分析的第二次验证案例:推荐系统。 推荐系统 基于热度推荐:由专家或者一定时期产品销售情况或者主推产品,制作一个排行榜,在没有用 ...
注:本大纲和笔记是根据台大林轩田老师《机器学习基石》和《机器学习技法》视频课程整理而来。林老师讲课幽默风趣,授课内容丰富而又通透,解决了我作为初学者的很多困惑,对此我非常感激。关于林老师的视频课程和相关资料,可参考这里。另外,个人认为,这里面讲解的最最精彩的是SVM和机器学习的可行性这两部分 ...
7 Support Vector Machines7.1 Large Margin Classification7.1.1 Optimization Objective支持向量机(SVM)代价函数在数 ...