最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正。 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program is said to learn from experience E ...
总体思路: 各种类型的机器学习分类 按照输出空间类型分Y 按照数据标记类型分yn 按照不同目标函数类型分f 按照不同的输入空间类型分X 按照输出空间类型Y,可以分为二元分类,多元分类,回归分析以及结构化学习等,这个好理解,离散的是分类,连续的是回归,到是结构化的学习接触的相对较少,以后有空可以关注下。 按照数据标记分可以分为: 监督 非监督 半监督 增强学习 下面这张ppt很好的总结了这点: 这是 ...
2013-12-09 23:08 0 4401 推荐指数:
最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正。 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program is said to learn from experience E ...
本章思路: 根据之前的总结,如果M很大,那么无论假设泛化能力差的概率多小,都无法忽略,所以问题转化为证明M不大,然后上章将其转化为证明成长函数:mh(N)为多项式级别。直接证明似乎很困难,本章继续利 ...
本章的思路在于揭示VC Dimension的意义,简单来说就是假设的自由度,或者假设包含的feature vector的个数(一般情况下),同时进一步说明了Dvc和,Eout,Ein以及Model ...
这节的主题感觉和training,testing关系不是很大,其根本线索在于铺垫并求解一个问题: 为什么算法PLA可以正确的work?因为前面的知识告诉我们,只有当假设的个 ...
提纲: 机器学习为什么可能? 引入计算橙球概率问题 通过用Hoeffding's inequality解决上面的问题,并得出PAC的概念,证明采样数据学习到的h的错误率可以和全局一致是PAC的 将得到的理论应用到机器学习,证明实际机器 ...
本文参考了北京大学王文敏教授的《人工智能原理》课程 https://www.icourse163.org/course/PKU-1002188003?tid=1206730204 mooc课件中从三个角度来分类机器学习,此外我还补充了几点 机器学习分类的视角有很多,从不同的角度可以了解 ...
三 -- Types of Learning 上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA。PLA能够在平面中选择一条直线将样本数据完全正确分类。而对于线性不可分的情况,可以使用Pocket Algorithm来处理。本节课将主要介绍一下机器学习有哪些种类,并进行归纳。 1. ...
注:本大纲和笔记是根据台大林轩田老师《机器学习基石》和《机器学习技法》视频课程整理而来。林老师讲课幽默风趣,授课内容丰富而又通透,解决了我作为初学者的很多困惑,对此我非常感激。关于林老师的视频课程和相关资料,可参考这里。另外,个人认为,这里面讲解的最最精彩的是SVM和机器学习的可行性这两部分 ...